前言:
眼前同学们对“求组合数的代码是多少”大概比较关切,我们都需要剖析一些“求组合数的代码是多少”的相关内容。那么小编在网络上搜集了一些关于“求组合数的代码是多少””的相关内容,希望你们能喜欢,大家一起来学习一下吧!我将公众号文章和学习相关的资料整理到了Github :,方便大家在电脑上学习,可以fork到自己仓库,顺便也给个star支持一波吧!
第39题. 组合总和
题目链接:
给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。
说明:
所有数字(包括 target)都是正整数。解集不能包含重复的组合。
示例 1:
输入:candidates = [2,3,6,7], target = 7,
所求解集为:
[
[7],
[2,2,3]
]
示例 2:
输入:candidates = [2,3,5], target = 8,
所求解集为:
[
[2,2,2,2],
[2,3,3],
[3,5]
]
思路
题目中的「无限制重复被选取,吓得我赶紧想想 出现0 可咋办」,然后看到下面提示:1 <= candidates[i] <= 200,我就放心了。
本题和回溯算法:求组合问题!,回溯算法:求组合总和!和区别是:本题没有数量要求,可以无限重复,但是有总和的限制,所以间接的也是有个数的限制。
本题搜索的过程抽象成树形结构如下:
注意图中叶子节点的返回条件,因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!
而在回溯算法:求组合问题!和回溯算法:求组合总和! 中都可以知道要递归K层,因为要取k个元素的组合。
回溯三部曲递归函数参数
这里依然是定义两个全局变量,二维数组result存放结果集,数组path存放符合条件的结果。(这两个变量可以作为函数参数传入)
首先是题目中给出的参数,集合candidates, 和目标值target。
此外我还定义了int型的sum变量来统计单一结果path里的总和,其实这个sum也可以不用,用target做相应的减法就可以了,最后如何target==0就说明找到符合的结果了,但为了代码逻辑清晰,我依然用了sum。
「本题还需要startIndex来控制for循环的起始位置,对于组合问题,什么时候需要startIndex呢?」
我举过例子,如果是一个集合来求组合的话,就需要startIndex,例如:回溯算法:求组合问题!,回溯算法:求组合总和!。
如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex,例如:互联网公司高频面试题目:「回溯算法」电话号码的字母组合
「注意以上我只是说求组合的情况,如果是排列问题,又是另一套分析的套路,后面我再讲解排列的时候就重点介绍」。
代码如下:
vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& candidates, int target, int sum, int startIndex)递归终止条件
在如下树形结构中:
从叶子节点可以清晰看到,终止只有两种情况,sum大于target和sum等于target。
sum等于target的时候,需要收集结果,代码如下:
if (sum > target) { return;}if (sum == target) { result.push_back(path); return;}单层搜索的逻辑
单层for循环依然是从startIndex开始,搜索candidates集合。
「注意本题和回溯算法:求组合问题!、回溯算法:求组合总和!的一个区别是:本题元素为可重复选取的」。
如何重复选取呢,看代码,注释部分:
for (int i = startIndex; i < candidates.size(); i++) { sum += candidates[i]; path.push_back(candidates[i]); backtracking(candidates, target, sum, i); // 关键点:不用i+1了,表示可以重复读取当前的数 sum -= candidates[i]; // 回溯 path.pop_back(); // 回溯}
按照关于关于回溯算法,你该了解这些 中给出的模板,不难写出如下C++完整代码:
// 版本一class Solution {private: vector<vector<int>> result; vector<int> path; void backtracking(vector<int>& candidates, int target, int sum, int startIndex) { if (sum > target) { return; } if (sum == target) { result.push_back(path); return; } for (int i = startIndex; i < candidates.size(); i++) { sum += candidates[i]; path.push_back(candidates[i]); backtracking(candidates, target, sum, i); // 不用i+1了,表示可以重复读取当前的数 sum -= candidates[i]; path.pop_back(); } }public: vector<vector<int>> combinationSum(vector<int>& candidates, int target) { result.clear(); path.clear(); backtracking(candidates, target, 0, 0); return result; }};剪枝优化
在这个树形结构中:
以及上面的版本一的代码大家可以看到,对于sum已经大于target的情况,其实是依然进入了下一层递归,只是下一层递归结束判断的时候,会判断sum > target的话就返回。
其实如果已经知道下一层的sum会大于target,就没有必要进入下一层递归了。
那么可以在for循环的搜索范围上做做文章了。
「对总集合排序之后,如果下一层的sum(就是本层的 sum + candidates[i])已经大于target,就可以结束本轮for循环的遍历」。
如图:
for循环剪枝代码如下:
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++)
整体代码如下:(注意注释的部分)
class Solution {private: vector<vector<int>> result; vector<int> path; void backtracking(vector<int>& candidates, int target, int sum, int startIndex) { if (sum > target) { return; } if (sum == target) { result.push_back(path); return; } // 如果 sum + candidates[i] > target 就终止遍历 for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) { sum += candidates[i]; path.push_back(candidates[i]); backtracking(candidates, target, sum, i); sum -= candidates[i]; path.pop_back(); } }public: vector<vector<int>> combinationSum(vector<int>& candidates, int target) { result.clear(); path.clear(); sort(candidates.begin(), candidates.end()); // 需要排序 backtracking(candidates, target, 0, 0); return result; }};总结
本题和我们之前讲过的回溯算法:求组合问题!、回溯算法:求组合总和!有两点不同:
组合没有数量要求元素可无限重复选取
针对这两个问题,我都做了详细的分析。
并且给出了对于组合问题,什么时候用startIndex,什么时候不用,并用回溯算法:电话号码的字母组合做了对比。
最后还给出了本题的剪枝优化,这个优化如果是初学者的话并不容易想到。
「在求和问题中,排序之后加剪枝是常见的套路!」
可以看出我写的文章都会大量引用之前的文章,就是要不断作对比,分析其差异,然后给出代码解决的方法,这样才能彻底理解题目的本质与难点。
「就酱,如果感觉很给力,就帮Carl宣传一波吧,奥利给!」。
我是程序员Carl,个人主页:
这里每天8:35准时推送一道经典算法题目,我选择的每道题目都不是孤立的,而是由浅入深,环环相扣,帮你梳理算法知识脉络,轻松学算法!
@代码随想录 期待你的关注
标签: #求组合数的代码是多少