龙空技术网

redis分布式锁两种应用场景

狗都不学Java 157

前言:

此刻同学们对“分布式锁的使用场景”大概比较讲究,我们都想要知道一些“分布式锁的使用场景”的相关内容。那么小编也在网上搜集了一些关于“分布式锁的使用场景””的相关内容,希望你们能喜欢,小伙伴们一起来学习一下吧!

“分布式锁”是用来解决分布式应用中“并发冲突”的一种常用手段,实现方式一般有基于zookeeper及基于redis二种。

这里我们分析下基于redis得场景和实现。

单节点部署场景举例说明,系统A和系统B是两个部署在不同节点的相同应用(集群部署),这时客户端请求传来,两个系统都受到了请求,并且该请求是对数据表进行插入操作,如果这个时候不加锁来控制,可能会导致数据库新增两条记录,这时系统也不能允许的,由于是在不同应用内,在单个应用内加JVM级别的锁,另一个应用是感知不到的,这时需要用到分布式锁。接下来我们看看这种场景如何实现安全的分布式锁,由于是单节点部署场景,我们可以用setnx命令,以请求的唯一主键作为key,由于该操作是原子操作,当系统A设值成功后,系统B是无法设置成功的, 这时A就可以进行查询并插入操作,操作数据库完成后,删除key,此时系统B才能设值成功,但是由于查询到数据库有记录,所以并不会插入数据,这样就解决了该问题。但是这里会有个问题,如果redis挂机了,这里的锁不是永远都不释放了吗, 所以为了解决这个问题,redis提供了set命令,可传入超时时间的,那么在指定的时间范围内,如果没有释放锁,则该锁自动过期。如果执行时间超过超时时间呢,比如系统A还未执行完任务,就释放了锁,系统B接着执行任务,这时,系统A执行完了,把锁删掉(此时删除的时系统B获取的锁)。方案一: 为了避免这种情况,在del锁之前可以做一个判断,验证key对应的value是不是自己线程的ID.如果要考虑原子性问题,可以使用Lua脚本来实现,保证验证和删除的原子性。方案二:我们可以让获得锁的线程开启一个守护线程,用来给快要过期的锁加长超时时间。当系统A中的线程执行完任务,再显式关掉守护线程。

具体到业务场景中,我们要考虑二种情况:

一、抢不到锁的请求,允许丢弃(即:忽略)

比如:一些不是很重要的场景,比如“监控数据持续上报”,某一篇文章的“已读/未读”标识位更新,对于同一个id,如果并发的请求同时到达,只要有一个请求处理成功,就算成功。

用活动图表示如下:

二、并发请求,不论哪一条都必须要处理的场景(即:不允许丢数据)

比如:一个订单,客户正在前台修改地址,管理员在后台同时修改备注。地址和备注字段的修改,都必须正确更新,这二个请求同时到达的话,如果不借助db的事务,很容易造成行锁竞争,但用事务的话,db的性能显然比不上redis轻量。

解决思路:A,B二个请求,谁先抢到分布式锁(假设A先抢到锁),谁先处理,抢不到的那个(即:B),在一旁不停等待重试,重试期间一旦发现获取锁成功,即表示A已经处理完,把锁释放了。这时B就可以继续处理了。

但有二点要注意:

a、需要设置等待重试的最长时间,否则如果A处理过程中有bug,一直卡死,或者未能正确释放锁,B就一直会等待重试,但是又永远拿不到锁。

b、等待最长时间,必须小于锁的过期时间。否则,假设锁2秒过期自动释放,但是A还没处理完(即:A的处理时间大于2秒),这时锁会因为redis key过期“提前”误释放,B重试时拿到锁,造成A,B同时处理。(注:可能有同学会说,不设置锁的过期时间,不就完了么?理论上讲,确实可以这么做,但是如果业务代码有bug,导致处理完后没有unlock,或者根本忘记了unlock,分布式锁就会一直无法释放。所以综合考虑,给分布式锁加一个“保底”的过期时间,让其始终有机会自动释放,更为靠谱)

用活动图表示如下:

写了一个简单的工具类:

package com.cnblogs.yjmyzz.redisdistributionlock;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.data.redis.core.StringRedisTemplate;import org.springframework.util.StringUtils;import java.util.UUID;import java.util.concurrent.TimeUnit;/*** 利用redis获取分布式锁** @author 菩提树下的杨过* @blog */public class RedisLock {private StringRedisTemplate redisTemplate;private Logger logger = LoggerFactory.getLogger(this.getClass());/*** simple lock尝试获取锅的次数*/private int retryCount = 3;/*** 每次尝试获取锁的重试间隔毫秒数*/private int waitIntervalInMS = 100;public RedisLock(StringRedisTemplate redisTemplate) {this.redisTemplate = redisTemplate;}/*** 利用redis获取分布式锁(未获取锁的请求,允许丢弃!)** @param redisKey 锁的key值* @param expireInSecond 锁的自动释放时间(秒)* @return* @throws DistributionLockException*/public String simpleLock(final String redisKey, final int expireInSecond) throws DistributionLockException {String lockValue = UUID.randomUUID().toString();boolean flag = false;if (StringUtils.isEmpty(redisKey)) {throw new DistributionLockException("key is empty!");}if (expireInSecond <= 0) {throw new DistributionLockException("expireInSecond must be bigger than 0");}try {for (int i = 0; i < retryCount; i++) {boolean success = redisTemplate.opsForValue().setIfAbsent(redisKey, lockValue, expireInSecond, TimeUnit.SECONDS);if (success) {flag = true;break;}try {TimeUnit.MILLISECONDS.sleep(waitIntervalInMS);} catch (Exception ignore) {logger.warn("redis lock fail: " + ignore.getMessage());}}if (!flag) {throw new DistributionLockException(Thread.currentThread().getName() + " cannot acquire lock now ...");}return lockValue;} catch (DistributionLockException be) {throw be;} catch (Exception e) {logger.warn("get redis lock error, exception: " + e.getMessage());throw e;}}/*** 利用redis获取分布式锁(未获取锁的请求,将在timeoutSecond时间范围内,一直等待重试)** @param redisKey 锁的key值* @param expireInSecond 锁的自动释放时间(秒)* @param timeoutSecond 未获取到锁的请求,尝试重试的最久等待时间(秒)* @return* @throws DistributionLockException*/public String lock(final String redisKey, final int expireInSecond, final int timeoutSecond) throws DistributionLockException {String lockValue = UUID.randomUUID().toString();boolean flag = false;if (StringUtils.isEmpty(redisKey)) {throw new DistributionLockException("key is empty!");}if (expireInSecond <= 0) {throw new DistributionLockException("expireInSecond must be greater than 0");}if (timeoutSecond <= 0) {throw new DistributionLockException("timeoutSecond must be greater than 0");}if (timeoutSecond >= expireInSecond) {throw new DistributionLockException("timeoutSecond must be less than expireInSecond");}try {long timeoutAt = System.currentTimeMillis() + timeoutSecond * 1000;while (true) {boolean success = redisTemplate.opsForValue().setIfAbsent(redisKey, lockValue, expireInSecond, TimeUnit.SECONDS);if (success) {flag = true;break;}if (System.currentTimeMillis() >= timeoutAt) {break;}try {TimeUnit.MILLISECONDS.sleep(waitIntervalInMS);} catch (Exception ignore) {logger.warn("redis lock fail: " + ignore.getMessage());}}if (!flag) {throw new DistributionLockException(Thread.currentThread().getName() + " cannot acquire lock now ...");}return lockValue;} catch (DistributionLockException be) {throw be;} catch (Exception e) {logger.warn("get redis lock error, exception: " + e.getMessage());throw e;}}/*** 锁释放** @param redisKey* @param lockValue*/public void unlock(final String redisKey, final String lockValue) {if (StringUtils.isEmpty(redisKey)) {return;}if (StringUtils.isEmpty(lockValue)) {return;}try {String currLockVal = redisTemplate.opsForValue().get(redisKey);if (currLockVal != null && currLockVal.equals(lockValue)) {boolean result = redisTemplate.delete(redisKey);if (!result) {logger.warn(Thread.currentThread().getName() + " unlock redis lock fail");} else {logger.info(Thread.currentThread().getName() + " unlock redis lock:" + redisKey + " successfully!");}}} catch (Exception je) {logger.warn(Thread.currentThread().getName() + " unlock redis lock error:" + je.getMessage());}}}

然后写个spring-boot来测试一下:

package com.cnblogs.yjmyzz.redisdistributionlock;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.boot.SpringApplication;import org.springframework.boot.autoconfigure.SpringBootApplication;import org.springframework.context.ConfigurableApplicationContext;import org.springframework.data.redis.core.StringRedisTemplate;import java.util.concurrent.CountDownLatch;import java.util.concurrent.TimeUnit;@SpringBootApplicationpublic class RedisDistributionLockApplication {private static Logger logger = LoggerFactory.getLogger(RedisDistributionLockApplication.class);public static void main(String[] args) throws InterruptedException {ConfigurableApplicationContext applicationContext = SpringApplication.run(RedisDistributionLockApplication.class, args);//初始化StringRedisTemplate redisTemplate = applicationContext.getBean(StringRedisTemplate.class);RedisLock redisLock = new RedisLock(redisTemplate);String lockKey = "lock:test";CountDownLatch start = new CountDownLatch(1);CountDownLatch threadsLatch = new CountDownLatch(2);final int lockExpireSecond = 5;final int timeoutSecond = 3;Runnable lockRunnable = () -> {String lockValue = "";try {//等待发令枪响,防止线程抢跑start.await();//允许丢数据的简单锁示例lockValue = redisLock.simpleLock(lockKey, lockExpireSecond);//不允许丢数据的分布式锁示例//lockValue = redisLock.lock(lockKey, lockExpireSecond, timeoutSecond);//停一会儿,故意让后面的线程抢不到锁TimeUnit.SECONDS.sleep(2);logger.info(String.format("%s get lock successfully, value:%s", Thread.currentThread().getName(), lockValue));} catch (Exception e) {e.printStackTrace();} finally {redisLock.unlock(lockKey, lockValue);//执行完后,计数减1threadsLatch.countDown();}};Thread t1 = new Thread(lockRunnable, "T1");Thread t2 = new Thread(lockRunnable, "T2");t1.start();t2.start();//预备:开始!start.countDown();//等待所有线程跑完threadsLatch.await();logger.info("======>done!!!");}}

 用2个线程模拟并发场景,跑起来后,输出如下:

可以看到T2线程没抢到锁,直接抛出了预期的异常。

把44行的注释打开,即:换成不允许丢数据的模式,再跑一下:

可以看到,T1先抢到锁,然后经过2秒的处理后,锁释放,这时T2重试拿到了锁,继续处理,最终释放。

标签: #分布式锁的使用场景