龙空技术网

综述(下)| 慢性粒单核细胞白血病的治疗研究进展

医脉通血液科 768

前言:

目前咱们对“anti cancer drugs 因子”可能比较珍视,朋友们都需要学习一些“anti cancer drugs 因子”的相关内容。那么小编也在网上搜集了一些关于“anti cancer drugs 因子””的相关内容,希望各位老铁们能喜欢,大家一起来了解一下吧!

综述:区小莹 中山大学附属第三医院血液科

审校:刘加军 中山大学附属第三医院血液科

导读

昨天,我们复习了慢性粒单核细胞白血病(CMML)的细胞遗传学和分子生物学特征,以及临床支持治疗的相关进展,今天,我们一起来看看CMML的治疗还有哪些新进展吧!

2

异基因造血干细胞移植

异基因造血干细胞移植(HSCT)仍然是唯一对CMML有潜在疗效的治疗方法。事实上,由于年龄较高(70%以上的患者在确诊时年龄在70岁以上)和存在相关的合并症等原因,可接受移植治疗的CMML患者较少。

此外,异基因造血干细胞移植后会出现各种急慢性并发症,包括移植物抗宿主病(GVHD)、无复发死亡和移植后疾病复发,只有20%-30%的移植患者可达到长期无病生存[33]。由于缺乏关于CMML患者异基因造血干细胞移植的风险和收益的前瞻性研究数据,患者选择、最佳时机、移植方式及预后相关因素等问题仍未解决。

当前CMML患者异基因造血干细胞移植的指南主要来源于专家意见和共识声明,国际专家组建议对符合条件(70岁以下有捐赠者并且没有移植的主要禁忌症)的CPSS中危-2或高危的患者进行移植[34]。异基因造血干细胞移植前较低的肿瘤负担可降低移植后复发的风险,并提高无病生存率。一项大型回顾性研究显示,进行造血干细胞移植治疗时,完全缓解的移植患者与活动性疾病移植患者相比,预后有所改善[33]。因此,有专家组建议当骨髓原始细胞大于10%时,在造血干细胞移植前进行细胞减少性治疗[21]。

造血干细胞移植前的细胞减少性治疗包括诱导化疗或去甲基化药物治疗。在异基因造血干细胞移植前,选择哪种细胞减少性治疗可达到更好的治疗结果仍然存在争议。一项在造血干细胞移植前比较诱导化疗和去甲基化药物治疗的前瞻性随机试验正在进行中(NCT01812252)。

造血干细胞移植后的复发率仍然很高(高达30%),这表明必须前瞻性地研究移植后策略以防止复发,例如使用去甲基化药物等。可幸的是,替代供体来源(即双倍脐带血和半相合供体)的引入、人类白细胞抗原(HLA)配型的进步以及移植相关发病率和死亡率(如移植物抗宿主病)管理的改善,让更多的患者可获得异基因造血干细胞移植[35]。

3

去甲基化药物

表观遗传机制的破坏,例如胞嘧啶碱基上的DNA甲基化,是癌症的一个公认的标志。由于2001年之前CMML被纳为MDS的一个亚型,所以CMML的治疗多借鉴于MDS的治疗,主要为地西他滨和阿扎胞苷这两种去甲基化药物。

地西他滨和阿扎胞苷均为胞苷核苷类似物,已被证明可合并到DNA中,不可逆地与DNA甲基转移酶结合,使DNA去甲基化和诱导DNA损伤,从而治疗肿瘤[36]。地西他滨和阿扎胞苷是美国FDA唯一批准用于治疗CMML的药物。尽管其临床试验数据来自于将少量CMML患者纳入MDS为主的临床试验而因此获得的批准。自将CMML从MDS中独立出来后,关于去甲基化药物在CMML中疗效的数据基本上以回顾性分析为主。

在一项大型的回顾性研究中,作者回顾性分析2001年至2011年间确诊的1378例CMML患者使用去甲基化药物的比例及治疗效果。资料显示整个队列的中位OS为13个月,不考虑诊断年份,使用去甲基化药物治疗的患者中位OS为17个月,而未治疗的患者为11个月。此外,使用去甲基化药物治疗与死亡风险降低28%相关,而支持性护理对OS没有影响[37]。

而另一项对151名CMML患者的回顾性分析中发现,与阿扎胞苷相比,地西他滨治疗的完全缓解率更高(58.3% vs 20.6%),而且年龄小于70岁、CPSS细胞遗传学风险较低、无外周原始细胞和血红蛋白水平高预示较好的OS[38]。

最近一项关于地西他滨在CMML中疗效的前瞻性II期研究显示,43例CMML患者分别应用地西他滨20mg/(m2·d)治疗5天,每28天为一个疗程,6个疗程后评估疗效,总反应率(ORR)为47%,其中完全缓解率(CR)为16%,骨髓缓解率为19%,部分缓解率为2.4%,血液改善率为9.5%。中位随访51.5个月,中位OS为17个月,57.6%的患者转化为AML[39]。

在一项多中心回顾性研究中,76例CMML患者使用阿扎胞苷治疗,结果显示总有效率为43%,中位OS为29个月[40]。

在一项多中心二期临床研究中,32例具有高危因素的CMML患者接受阿扎胞苷75 mg/m2治疗7天,每28天为一个疗程,不少于6个疗程。结果显示ORR为20%,其中7%的患者获得CR,13%的患者达到骨髓缓解或血液系统改善,中位OS为16个月,随访13个月后,33%转化为AML[41]。

另外,口服地西他滨(ASTX727)和阿扎胞苷(CC-486)目前正在开发中[42,43]。

Guadecitabine(SG-110)是由地西他滨和脱氧鸟苷组成的二核苷酸,能够抵抗胞苷脱氨酶的降解。皮下注射后,guadecitabine缓慢释放其活性代谢物地西他滨,其半衰期比静脉给药的半衰期更长,且最大血浆浓度有所降低[44]。半衰期延长有助于更好地发挥药物作用,而最大血浆浓度的降低有助于避免峰值相关毒性。在2期临床试验中,Guadecitabine已被证明在中、高危MDS和CMML的治疗中具有临床活性[45]。目前正在进行3期临床试验,招募过去使用去甲基化药物治疗的MDS和CMML患者(NCT02907359)。

4

靶向药物治疗

CMML患者血浆白细胞介素-6(IL-6)和GM-CSF水平升高,而CML和AML患者血浆IL-6和GM-CSF水平无明显变化[46]。美国一项临床前研究已经证实CMML的特点是造血干细胞和祖细胞对GM-CSF超敏,CMML细胞通过GM-CSF/JAK2/STAT5传递信号,而GM-CSF中和抗体(KB003/lenzilumab)或JAK2抑制剂会降低CMML细胞的活力和集落生长[47]。与IL-3和G-CSF相比,GM-CSF超敏反应是细胞因子特异性的,因此GM-CSF轴是CMML的一个潜在的治疗靶点[47]。

Lenzilumab是一种重组单克隆抗体,可以中和GM-CSF与其同源受体的结合,进而降低CMML细胞的增殖。Lenzilumab一期临床试验报告显示,lenzilumab对难治、不耐受或被认为不符合去甲基化药物或羟基脲治疗条件的CMML患者具有安全性和初步疗效,33%的患者可获得持久的临床益处[48]。目前,lenzilumab正在CMML患者中进行2期临床试验(NCT02546284)。

JAK抑制剂可通过中和GM-CSF来降低CMML细胞的增殖。JAK抑制剂芦可替尼(ruxolitinib)的I期临床试验显示,20名CMML-1患者接受了递增剂量的芦可替尼治疗,没有出现剂量限制毒性的报道。结合IWG和脾脏反应,总有效率为35%(n=7),表示芦可替尼对CMML患者具有安全性和潜在疗效,剂量最高可达20 mg,bid[49]。

最近的有关芦可替尼的1/2期联合研究结果报告显示,在49名CMML患者(56%患有MP-CMML)中,总有效率为46%,中位OS为69个月,与历史队列(31个月,P=0.03)相比,治疗队列的中位OS延长了[50]。

其他正在进行临床预评估的JAK抑制剂包括CYT387(momelotinib)和帕克替尼(pacritinib)。帕克替尼具有独特的抗酪氨酸激酶活性谱,在临床研究中与阿扎胞苷显示出协同作用[51]。

多种信号通路,包括GM-CSF和其他细胞因子,最终激活RAS/MAPK通路。此外,RAS通路基因突变是导致髓系恶性肿瘤MAPK活化的最常见的遗传事件。因此,以RAS/MAPK通路为靶点是一种具发展前景的治疗选择。

法尼基转移酶抑制剂,如替吡法尼(Tipifarnib),通过抑制法尼基转移酶,阻断了RAS家族蛋白在质膜上的定位,RAS不能被激活,进而不能通过MAP激酶激活下游信号[52]。目前,替吡法尼正在CMML患者中进行2期临床试验 (NCT02807272)。

曲美替尼(trametinib)是下游信号调节因子MEK的抑制剂,在一项包括CMML在内的RAS突变髓系恶性肿瘤的2期临床试验中(NCT00920140)显示,NRA或KRAS基因突变的CMML患者对曲美替尼的总有效率为27%,并可能在联合方案中具有潜力[53]。

约60%的CMML病例中可观察到剪接因子基因突变[54],最常见的是SRSF2、U2AF1和SF3B1。H3B-8800是一种剪接体调节剂,可与SF3B剪接体复合物结合,并选择性抑制CMML患者源性异种移植白血病模型中剪接因子突变型细胞体外生长,进而能够有效且优先地杀死剪接体突变的上皮和血液肿瘤细胞[55]。目前正在对患有MDS、AML和CMML的受试者进行H3B-8800的全球多中心I期临床试验(NCT02841540)。

IL-3受体(CD123)在包括CMML在内的许多血液系统恶性肿瘤中均有表达。SL-401(Tagraxofusp)是一种选择性靶向IL-3受体的重组融合蛋白,已在18名复发/难治性CMML患者中进行1/2期临床试验(NCT02268253)。初步结果显示SL-401在缩小脾脏大小和获得骨髓形态学反应方面有效,且安全性可控[56]。

5

其他新型药物

约5%CMML患者中可发现IDH1、IDH2基因突变[15]。IDH1抑制剂(Ivosidenib,AG-120)、IDH2抑制剂(Enasidenib,AG-221)在治疗IDH家族蛋白突变的晚期血液恶性肿瘤中(包括CMML)可以改善中性粒细胞减少,降低感染率,显示出治疗前景[57,58]。

来那度胺在血液恶性肿瘤中具有多效性,表现出直接的细胞毒性以及抗血管生成、抗炎和免疫调节作用。来那度胺及沙利度胺也可用于治疗CMML,但收效甚微[35]。

其他在研究的新药还有Hedgehog基因通路抑制剂(glasdegib,NCT02367456),组蛋白去乙酰化酶抑制剂(tefinostat,EudraCT 2015-002281-23)等。

6

联合用药

研究发现在MDS和CMML中免疫检查点PD-L1、PD-L2、PD-1和CTLA4过表达,34%的CMML患者出现上调(≥2倍) [59]。在一组使用去甲基化药物治疗的患者中,发现PD-L1、PD-L2、PD-1和CTLA4的表达上调,提示去甲基化药物的暴露可增加表面免疫检查点蛋白的表达[59]。与有反应的患者相比,耐药患者的基因表达增加相对较高,提示免疫检查点可能参与去甲基化药物的耐药机制[59]。因此,目前正在MDS和CMML患者中进行免疫检查点抑制剂与去甲基化药物联合应用的临床试验。

一项I/II期临床试验正在评估guadecitabine(第二代去甲基化药物)和atezolizumab(一种针对PD-L1的免疫检查点抑制剂)在耐药/难治性MDS或CMML患者中的相关性(NCT02935361)。阿扎胞苷与nivolumab(PD-1抑制剂)或ipilimumab(CTLA4受体阻滞剂)或两者结合使用也在探索中(NCT02530463)。此外,阿扎胞苷与其他药物的联合用药也在探索中。

在美国的一项研究中,53名CMML患者和224名高危MDS患者被随机分成阿扎胞苷、阿扎胞苷+来那度胺和阿扎胞苷+伏立诺他三个治疗组。与单独使用阿扎胞苷相比,接受阿扎胞苷+来那度胺治疗的CMML患者的应答率有所改善(68% vs 28%)[60]。但在总生存率上,与单独使用阿扎胞苷相比,阿扎胞苷+来那度胺或伏立诺他的联合用药未显示出任何益处[60]。

刘加军 教授

教授、主任医师、博士生导师

中山大学附属第三医院血液科主任

欧洲肿瘤协会抗癌分会会员

中国免疫协会会员

广东省医疗行业协会常委

广东省血液学会会员等

从事血液病临床及基础工作30余年。曾主持国家自然基金3项,省部级课题8项,在国内外发表论文100余篇,其中SCI论文30余篇。

目前担任SCI 杂志 Anti-Cancer Drugs 常务编委、教育部“中国科技论文在线”特邀评审专家等。

2006 年被评为教育部“新世纪优秀人才”。2012年荣获广东省科技进步三等奖。

参考文献:

[1] Patnaik M M, Tefferi A. Chronic Myelomonocytic Leukemia: 2020 Update on Diagnosis, Risk Stratification and Management[J]. American Journal of Hematology, 2020, 95(1): 97-115.

[2] Takahashi K, Pemmaraju N, Strati P, et al. Clinical characteristics and outcomes of therapy-related chronic myelomonocytic leukemia[J]. Blood, 2013, 122(16): 2807-2811.

[3] Padron E, Yoder S J, Kunigal S, et al. ETV6 and signaling gene mutations are associated with secondary transformation of myelodysplastic syndromes to chronic myelomonocytic leukemia.[J]. Blood, 2014, 123(23): 3675-3677.

[4] Bennett J M, Catovsky D, Daniel M, et al. Proposals for the classification of the myelodysplastic syndromes[J]. British Journal of Haematology, 1982, 51(2): 189-199.

[5] Bennett J M, Catovsky D, Daniel M, et al. The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French-American-British Cooperative Leukaemia Group.[J]. British Journal of Haematology, 1994, 87(4): 746-754.

[6] Orazi A, Bennett JM, Germing U, Brunning RD, Bain B, Thiele J. Chronic myelomonocytic leukemia. In: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues: Eds. Swerdlow SH, Campo E, Harris NL, et al. International Agency for Research on Cancer -IARC Press Lyon 2008, 76-79.

[7] Le Beau, Michelle M.,Vardiman, James W.,Bloomfield, Clara D., et al.The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J].Blood: The Journal of the American Society of Hematology,2016,127(20):2391-2405.

[8] Padron E, Garciamanero G, Patnaik M M, et al. An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies[J]. Blood Cancer Journal, 2015, 5(7): 1-8.

[9] U Germing, A K&uuml, ndgen, et al. Risk Assessment in Chronic Myelomonocytic Leukemia (CMML). 2004, 45(7):1311-1318.

[10] Wassie E A, Itzykson R, Lasho T L, et al. Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic-French Consortium Study.[J]. American Journal of Hematology, 2014, 89(12): 1111-1115.

[11] Coltro G, Patnaik M M. Chronic Myelomonocytic Leukemia: Insights into Biology, Prognostic Factors, and Treatment.[J]. Current Oncology Reports, 2019, 21(11): 1-16.

[12] Eric Padron, David P. Steensma. Cutting the cord from myelodysplastic syndromes: chronic myelomonocytic leukemia-specific biology and management strategies. 2015, 22(2):163-170.

[13] Such E, Cervera J, Costa D, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia[J]. Haematologica, 2011, 96(3): 375-383.

[14] M M Patnaik,R Itzykson,T L Lasho, et al.ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients.[J].Leukemia: Official journal of the Leukemia Society of America, Leukemia Research Fund, U.K,2014,28(11):2206-2212.

[15] Itzykson R, Kosmider O, Renneville A, et al. Prognostic Score Including Gene Mutations in Chronic Myelomonocytic Leukemia[J]. Journal of Clinical Oncology, 2013, 31(19): 2428-2436.

[16] Malcovati L, Papaemmanuil E, Ambaglio I, et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia[J]. Blood, 2014, 124(9): 1513-1521.

[17] Malcovati L, Hellstromlindberg E, Bowen D, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet[J]. Blood, 2013, 122(17): 2943-2964.

[18] Mrinal M. Patnaik,Ayalew Tefferi. Chronic Myelomonocytic Leukemia: Focus on Clinical Practice[J]. Mayo Clinic Proceedings,2016,91(2).

[19] Xicoy, Blanca,Germing, Ulrich,Jimenez, Maria-Jose, et al.Response to erythropoietic-stimulating agents in patients with chronic myelomonocytic leukemia[J].European Journal of Haematology,2016,97(1):33-38.

[20] Hellstromlindberg E, De Loosdrecht A A. Erythropoiesis stimulating agents and other growth factors in low-risk MDS[J]. Best Practice & Research Clinical Haematology, 2013, 26(4): 401-410.

[21] Itzykson R, Fenaux P, Bowen D, et al. Diagnosis and Treatment of Chronic Myelomonocytic Leukemias in Adults: Recommendations From the European Hematology Association and the European LeukemiaNet[J].Hemasphere,2018,2(6):e150.

[22] Soraya Carrancio,Jennifer Markovics,Piu Wong, et al.An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin[J].British Journal of Haematology,2014,165(6):870-882.

[23] Komrokji R S, Garciamanero G, Ades L, et al. Sotatercept with long-term extension for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes: a phase 2, dose-ranging trial[J]. The Lancet Haematology, 2018, 5(2).

[24] Giagounidis A, Platzbecker U, Germing U, et al. Luspatercept Treatment Leads to Long Term Increases in Hemoglobin and Reductions in Transfusion Burden in Patients with Low or Intermediate-1 Risk Myelodysplastic Syndromes (MDS): Preliminary Results from the Phase 2 PACE-MDS Extension Study[J]. Blood, 2015, 126(23): 92-92.

[25] Valent P, Krieger O, Stauder R, et al. Iron overload in myelodysplastic syndromes (MDS) – diagnosis, management, and response criteria: a proposal of the Austrian MDS platform[J]. European Journal of Clinical Investigation, 2008, 38(3): 143-149.

[26] Itzkson R, Fenaux P, Solary E, et al. Chronic myelomonocytic leukemia: Myelodysplastic or myeloproliferative?[J]. Best Practice & Research Clinical Haematology, 2013, 26(4): 387-400.

[27] Hadjadj J, Michel M, Chauveheid M P, et al. Immune thrombocytopenia in chronic myelomonocytic leukemia[J]. European Journal of Haematology, 2014, 93(6): 521-526.

[28] Prica A, Sholzberg M, Buckstein R, et al. Safety and efficacy of thrombopoietin-receptor agonists in myelodysplastic syndromes: a systematic review and meta-analysis of randomized controlled trials[J]. British Journal of Haematology, 2014, 167(5): 626-638.

[29] Oliva E, Alati C, Santini V, et al. Eltrombopag versus placebo for low-risk myelodysplastic syndromes with thrombocytopenia (EQoL-MDS): phase 1 results of a single-blind, randomised, controlled, phase 2 superiority trial[J]. The Lancet Haematology, 2017, 4(3).

[30] Ramadan H, Duong V H, Ali N H, et al. Eltrombopag Use in Patients With Chronic Myelomonocytic Leukemia (CMML): A Cautionary Tale[J]. Clinical Lymphoma, Myeloma & Leukemia, 2016.

[31] Wattel E, Guerci A, Hecquet B, et al. A randomized trial of hydroxyurea versus VP16 in adult chronic myelomonocytic leukemia. Groupe Francais des Myelodysplasies and European CMML Group[J]. Blood, 1996, 88(7): 2480-2487.

[32] Pophali P, Horna P, Lasho T L, et al. Splenectomy in patients with chronic myelomonocytic leukemia: Indications, histopathological findings and clinical outcomes in a single institutional series of thirty‐nine patients[J]. American Journal of Hematology, 2018, 93(11): 1347-1357.

[33] Cornelissen, Jan,van Biezen, Anja,Schwerdtfeger, Rainer, et al.Achievement of complete remission predicts outcome of allogeneic haematopoietic stem cell transplantation in patients with chronic myelomonocytic leukaemia. A study of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation[J].British Journal of Haematology,2015,171(2):239-246.

[34] Theo de Witte, David Bowen, Marie Robin, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. 2017, 129(13):1753-1762.

[35] Nazha A, Prebet T, Gore S D, et al. Chronic myelomoncytic leukemia: Are we finally solving the identity crisis?[J]. Blood Reviews, 2016, 30(5): 381-388.

[36] Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy[J].Oncogene, 2002,21(35):5483‐5495.

[37] Zeidan A M, Hu X, Long J B, et al. Hypomethylating Agent Therapy use and Survival in Older Patients with Chronic Myelomonocytic Leukemia in USA: A Large Population-Based Study[J]. Leukemia Research, 2017.

[38] Alfonso A, Montalbanbravo G, Takahashi K, et al. Natural history of chronic myelomonocytic leukemia treated with hypomethylating agents[J]. American Journal of Hematology, 2017, 92(7): 599-606.

[39] Santini V, Allione B, Zini G, et al. A phase II, multicentre trial of decitabine in higher-risk chronic myelomonocytic leukemia[J]. Leukemia, 2018, 32(2): 413-418.

[40] Ades L, Sekeres M A, Wolfromm A, et al. Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine[J]. Leukemia Research, 2013, 37(6): 609-613.

[41] Drummond M W, Pocock C, Boissinot M, et al. A multi-centre phase 2 study of azacitidine in chronic myelomonocytic leukaemia.[J]. Leukemia, 2014, 28(7): 1570-1572.

[42] Garcia-Manero G, Griffiths EA, Roboz GJ, Busque L, Wells RA, Odenike O, et al. A phase 2 dose-confirmation study of oral ASTX727, a combination of oral decitabine with a cytidine deaminase inhibitor (CDAi) cedazuridine (E7727), in subjects with myelodysplastic syndromes (MDS)[J].Blood,2017,130:4274.

[43] Savona M R, Kolibaba K, Conkling P, et al. Extended dosing with CC‐486 (oral azacitidine) in patients with myeloid malignancies[J]. American Journal of Hematology, 2018, 93(10): 1199-1206.

[44] Issa JJ, Roboz G, Rizzieri D, et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study[J]. The Lancet Oncology,2015,16(9) :1099‐1110.

[45] Savona M R, Garciamanero G, Roboz G J, et al. Randomized Phase 2 Study of Guadecitabine in Patients with HMA-Naive Higher Risk Myelodysplastic Syndromes (MDS) or Chronic Myelomonocytic Leukemia (CMML)[J]. Leukemia Research,2017,55.

[46] Everson M P, Brown C B, Lilly M B, et al. Interleukin-6 and Granulocyte-Macrophage Colony-Stimulating Factor Are Candidate Growth Factors for Chronic Myelomonocytic Leukemia Cells[J]. Blood, 1989, 74(5): 1472-1476.

[47] Padron E, Painter J S, Kunigal S, et al. GM-CSF–dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia[J]. Blood, 2013, 121(25): 5068-5077.

[48] Patnaik MM, Sallman DA, Mangaonkar A, et al. Phase 1 study of lenzilumab, a recombinant anti-human GM-CSF antibody, for chronic myelomonocytic leukemia (CMML)[J].Blood, 2020.

[49] Padron E, Dezern A E, Andradecampos M, et al. A Multi-Institution Phase I Trial of Ruxolitinib in Patients with Chronic Myelomonocytic Leukemia (CMML)[J]. Clinical Cancer Research, 2016, 22(15): 3746-3754.

[50] Padron E, Dezern A E, Niyongere S, et al. Promising Results of a Phase 1/2 Clinical Trial of Ruxolitinib in Patients with Chronic Myelomonocytic Leukemia[J]. Blood, 2017: 162-162.

[51] Ma Y, Rix L L, Zhang Q, et al. Pacritinib (PAC) Synergistically Potentiates Azacitidine (5AZA) Cytotoxicity in Chronic Myelomonocytic Leukemia (CMML)[J]. Blood, 2015, 126(23): 1658-1658.

[52] Beaupre D M, Kurzrock R. RAS and Leukemia: From Basic Mechanisms to Gene-Directed Therapy[J]. Journal of Clinical Oncology, 1999, 17(3): 1071-1071.

[53] Borthakur G, Popplewell L, Boyiadzis M, et al. Activity of the Oral Mitogen-Activated Protein Kinase Kinase Inhibitor Trametinib in RAS -Mutant Relapsed or Refractory Myeloid Malignancies[J]. Cancer, 2016, 122(12): 1871-1879.

[54] Saez B, Walter M J, Graubert T A, et al. Splicing factor gene mutations in hematologic malignancies[J]. Blood, 2017, 129(10): 1260-1269.

[55] Seiler M, Yoshimi A, Darman R, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers[J]. Nature Medicine, 2018, 24(4): 497-504.

[56] Patnaik M M, Ali H, Gupta V, et al. Results from Ongoing Phase 1/2 Clinical Trial of Tagraxofusp (SL-401) in Patients with Relapsed/Refractory Chronic Myelomonocytic Leukemia (CMML)[J]. Blood, 2018: 1821-1821.

[57] DiNardo C, De Botton S, Pollyea D, et al. Molecular profiling and relationship with clinical response in patients with IDH1 mutation-positive hematologic malignancies receiving AG-120, a first-in-class potent inhibitor of mutant IDH1, in addition to data from the completed dose escalation portion of the phase 1 study[J]. Blood, 2015, 126: 1306.

[58] Stein E, DiNardo C, Altman J, et al. Safety and efficacy of AG-221, a potent inhibitor of mutant IDH2 that promotes differentiation of myeloid cells in patients with advanced hematologic malignancies: Results of a phase 1/2 trial[J]. Blood, 2015, 126: 323.

[59] Yang H, Buesoramos C E, Dinardo C D, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents[J]. Leukemia, 2014, 28(6): 1280-1288.

[60] Buckstein, Rena,Stone, Richard M.,Bloomfield, Clara D., et al. Randomized Phase II Study of Azacitidine Alone or in Combination With Lenalidomide or With Vorinostat in Higher-Risk Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia: North American Intergroup Study SWOG S1117[J].Journal of Clinical Oncology,2017,35(24):2745-2753.

标签: #anti cancer drugs 因子