前言:
而今你们对“python中如何将矩阵中的元素赋值为两倍”都比较着重,兄弟们都想要学习一些“python中如何将矩阵中的元素赋值为两倍”的相关资讯。那么小编在网摘上收集了一些对于“python中如何将矩阵中的元素赋值为两倍””的相关资讯,希望朋友们能喜欢,姐妹们快快来了解一下吧!前言:
今天为大家带来的内容是,总结python的常见矩阵运算!(矩阵的创建,numpy,应元素相乘)具有不错的参考意义,希望能够帮助到大家!
部分代码用图片方式呈现出来,方便各位观看与收藏!
提示:
python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。
一.numpy的导入和使用
from numpy import *;#导入numpy的库函数import numpy as np; #这个方式使用numpy的函数时,需要以np.开头。
二.矩阵的创建
由一维或二维数据创建矩阵
from numpy import *;a1=array([1,2,3]);a1=mat(a1);
创建常见的矩阵
三.常见的矩阵运算
1. 矩阵相乘
a1=mat([1,2]); a2=mat([[1],[2]]);a3=a1*a2;#1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵
2. 矩阵点乘
矩阵对应元素相乘
a1=mat([1,1]);a2=mat([2,2]);a3=multiply(a1,a2);
矩阵点乘
a1=mat([2,2]);a2=a1*2;
3.矩阵求逆,转置
矩阵求逆
a1=mat(eye(2,2)*0.5);a2=a1.I;#求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵
矩阵转置
a1=mat([[1,1],[0,0]]);a2=a1.T;
4.计算矩阵对应行列的最大、最小值、和。
a1=mat([[1,1],[2,3],[4,2]]);
计算每一列、行的和
a2=a1.sum(axis=0);//列和,这里得到的是1*2的矩阵a3=a1.sum(axis=1);//行和,这里得到的是3*1的矩阵a4=sum(a1[1,:]);//计算第一行所有列的和,这里得到的是一个数值
计算最大、最小值和索引
5.矩阵的分隔和合并
矩阵的分隔,同列表和数组的分隔一致。
a=mat(ones((3,3)));b=a[1:,1:];//分割出第二行以后的行和第二列以后的列的所有元素
矩阵的合并
四.矩阵、列表、数组的转换
列表可以修改,并且列表中元素可以使不同类型的数据,如下:
l1=[[1],'hello',3];
numpy中数组,同一个数组中所有元素必须为同一个类型,有几个常见的属性:
它们之间的转换:
这里可以发现三者之间的转换是非常简单的,这里需要注意的是,当列表是一维的时候,将它转换成数组和矩阵后,再通过tolist()转换成列表是不相同的,需要做一些小小的修改。如下:
矩阵转换成数值,存在以下一种情况:
dataMat=mat([1]);val=dataMat[0,0];//这个时候获取的就是矩阵的元素的数值,而不再是矩阵的类型
以上就是本文的全部内容,希望对大家的学习有所帮助
小编再这里说句:我是一名python开发工程师,最近闲得无聊,整理了一套最新的python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习,面试宝典,面试宝典,面试宝典。想要这些资料的可以关注小编,并在后台私信小编:“07”即可领取。
标签: #python中如何将矩阵中的元素赋值为两倍 #python3矩阵 #python逆矩阵代码 #python 零矩阵 #numpy全零矩阵