前言:
目前你们对“如何把多条直线合并成一条多段线图解”可能比较关注,兄弟们都需要剖析一些“如何把多条直线合并成一条多段线图解”的相关知识。那么小编同时在网上汇集了一些对于“如何把多条直线合并成一条多段线图解””的相关文章,希望姐妹们能喜欢,兄弟们快快来学习一下吧!一.解析PCB图形绘制实现
解析PCB图形,说简单也非常简单,先说一下,PCB Gerber图形由:点,线,弧,铜皮,文字 5类元素组成,通常简写为:P,L,A,S,T五类,这几类元素的难易程度,刚好是按这个顺序排列的(个人实际应用这么认为的)。即然是5类就得建立5种元素的数据结构存储它吧。
PAD结构
/// PAD 数据类型 public struct gP { public gPoint p; public bool negative;//polarity-- positive negative public int angle; public bool mirror; public string symbols; public string attribut; public double width; }线结构
/// Line 数据类型public struct gL{ public gPoint ps; public gPoint pe; public bool negative;//polarity-- positive negative public string symbols; public string attribut; public double width;}弧结构
/// ARC 数据类型public struct gA{ public gPoint ps; public gPoint pe; public gPoint pc; public bool negative;//polarity-- positive negative public bool ccw; //direction-- cw ccw public string symbols; public string attribut; public double width;}铜皮结构
/// Surface 坐标泛型集类1 public struct gSur_Point { public gPoint p; /// 0为折点 1为顺时针 2为逆时针 public byte type_point; } /// Surface 坐标泛型集类2 public class gSur_list { public List<gSur_Point> sur_list = new List<gSur_Point>(); /// 是否为空洞 /// </summary> public bool is_hole { get; set; } /// 是否逆时针 public bool is_ccw { get; set; } } /// Surface 坐标泛型集类3 public class gS { public List<gSur_list> sur_group = new List<gSur_list>(); /// 是否为负 polarity-- P N public bool negative { get; set; } public string attribut { get; set; } }文字结构
看这个结构比Surface铜皮结构还简单呀,为什么文字结构更复杂了,这里只是实现最普通的字体结构,实际复杂程度远大于Surface,需要解析到所用到的字体库中的的坐标,而且字体存在各式各样的,有二维码,点阵字,有条码,要想保证和Genesis所显示一致,这里需要下点功夫。
/// Text 文本数据类型 简易型 更复杂的需要扩展 public struct gT { public gPoint ps; public string font; public bool negative;//polarity-- positive negative public int angle; public bool mirror; public double x_size; public double y_size; public double width; public string Text; public string attribut; }
那么为什么symbols不算一类呢,因为symbols也是由这5类基础元素组合而成的,绘制时检索symbols中所含元素集合,再将Symbols集合遍历一个一个的元素绘制到画板上来的。
Gerber数据存储到这个结构中后.那用Graphics类,遍历元素集合,依次绘制元素就好了;下面说一下遇到的问题解决方法。
二.绘制Gerber图形遇到的几个问题解决方法
1.同一层图形的元素是存在先后顺序的,不能按元素类别分类集合,如List<P>,List<L>,这样是错误的
若元素要按先后顺序保存,那么这里可以选择用ArrayList集合存储数据
2.绘制圆形焊盘时,对于Genesis而言它是一个点坐标,在net中是没有直接绘制点方法.
那么对应net中是用FillEllipse方法绘制就可以了
3.绘制焊盘有很多种symbols,包含标准symbols和非标准symbols(自定义的),如何判断一个symbols是标准symbols还是非标准symbols呢
在解析ODB++或Gerber前,提前将自定义symbols名存储为自定义symbols字典集合中,绘制时优先检测symbols名是否存在自定义字典集合中,如果存在,则解析自定义symbosl绘制,如果不存在,则通过标准symbosl名命名规则匹配,不考虑校率用正则也可以的,如:r200,rect200x300,oval200x300,donut_r300x200等,匹配到标准symbols后通过建立各种标准symbols绘制模版,找到对应的symbols模版再绘制。
4.如绘制:donut_r300x200这个symbols时,是绘制300这个实心圆,再绘制黑色背景实现圆环效果呢,
其实这样绘制就是错误的,需采用:GraphicsPath类绘制,再用Region类差集裁减掉不需要多余部份图形。
5.在Gerber图形中一条弧直径只有0.1毫米,转为像素为0,绘制会出错,
要这里需加以判断,0像素时直接跳出不绘
6.在Gerber图形中一条线段,线段间距只有0.1毫米, 转为像素为0时,但线宽为5毫米,转为像不为2像素,
那这是绘呢,还是不绘呢,由于长度像素是0,但线的宽度达到了2个像素,那么就这条线就按一个点来绘制
7.在Gerber中Surface铜皮中存在空洞时,不能用FillPolygon方法绘制,
需采用:GraphicsPath类绘制,再用Region类差集裁减掉不需要多余部份图形
8.在Gerber中Surface铜皮存在弧节点时,不能用FillPolygon方法绘制,这结构它不支持弧节点,
如果一定要要用FillPolygon可以将弧转为多个节点来绘制多边形,当然另一种方法用GraphicsPath类中增Arc结点来完成弧的绘制
9.Gerber中如果字体引用了shx字体如何解析呢
这里就需要熟悉shx的数据结构了才行了,不然一点办法也没有
点击进去: 这是解析方法,解析后再转为坐标数据就可以了
10.如果是:canned_57,standard等字体如何解析呢
这是Genesis自带字体,文件一般存放在:C:\genesis\fw\lib\fonts,这是明文坐标很好解决,直接解析就好了。
三.5类元素基本数据结构
这是基本的不全面,可以扩展并改进的.
/// 点 数据类型 (XY) /// </summary> public struct gPoint { public gPoint(gPoint p_) { this.x = p_.x; this.y = p_.y; } public gPoint(double x_val, double y_val) { this.x = x_val; this.y = y_val; } public double x; public double y; public static gPoint operator +(gPoint p1, gPoint p2) { p1.x += p2.x; p1.y += p2.y; return p1; } public static gPoint operator -(gPoint p1, gPoint p2) { p1.x -= p2.x; p1.y -= p2.y; return p1; } } /// <summary> /// 精简 PAD 数据类型 /// </summary> public struct gPP { public gPP(double x_val, double y_val, double width_) { this.p = new gPoint(x_val, y_val); this.symbols = "r"; this.width = width_; } public gPP(gPoint p_, double width_) { this.p = p_; this.symbols = "r"; this.width = width_; } public gPP(gPoint p_, string symbols_, double width_) { this.p = p_; this.symbols = symbols_; this.width = width_; } public gPoint p; public string symbols; public double width; public static gPP operator +(gPP p1, gPP p2) { p1.p += p2.p; return p1; } public static gPP operator +(gPP p1, gPoint p2) { p1.p += p2; return p1; } public static gPP operator -(gPP p1, gPP p2) { p1.p -= p2.p; return p1; } public static gPP operator -(gPP p1, gPoint p2) { p1.p -= p2; return p1; } } /// <summary> /// PAD 数据类型 /// </summary> public struct gP { public gP(double x_val, double y_val, double width_) { this.p = new gPoint(x_val, y_val); this.negative = false; this.angle = 0; this.mirror = false; this.symbols = "r"; this.attribut = string.Empty; this.width = width_; } public gP(gPoint p_, double width_) { this.p = p_; this.negative = false; this.angle = 0; this.mirror = false; this.symbols = "r"; this.attribut = string.Empty; this.width = width_; } public gP(gPoint p_, string symbols_, double width_) { this.p = p_; this.negative = false; this.angle = 0; this.mirror = false; this.symbols = symbols_; this.attribut = string.Empty; this.width = width_; } public gPoint p; public bool negative;//polarity-- positive negative public int angle; public bool mirror; public string symbols; public string attribut; public double width; public static gP operator +(gP p1, gP p2) { p1.p += p2.p; return p1; } public static gP operator +(gP p1, gPP p2) { p1.p += p2.p; return p1; } public static gP operator +(gP p1, gPoint p2) { p1.p += p2; return p1; } public static gP operator -(gP p1, gP p2) { p1.p -= p2.p; return p1; } public static gP operator -(gP p1, gPP p2) { p1.p -= p2.p; return p1; } public static gP operator -(gP p1, gPoint p2) { p1.p -= p2; return p1; } } /// <summary> /// Line 数据类型 /// </summary> public struct gL { public gL(double ps_x, double ps_y, double pe_x, double pe_y, double width_) { this.ps = new gPoint(ps_x, ps_y); this.pe = new gPoint(pe_x, pe_y); this.negative = false; this.symbols = "r" + width_.ToString(); this.attribut = string.Empty; this.width = width_; } public gL(gPoint ps_, gPoint pe_, double width_) { this.ps = ps_; this.pe = pe_; this.negative = false; this.symbols = "r" + width_.ToString(); this.attribut = string.Empty; this.width = width_; } public gL(gPoint ps_, gPoint pe_, string symbols_, double width_) { this.ps = ps_; this.pe = pe_; this.negative = false; this.symbols = symbols_; this.attribut = string.Empty; this.width = width_; } public gPoint ps; public gPoint pe; public bool negative;//polarity-- positive negative public string symbols; public string attribut; public double width; public static gL operator +(gL l1, gPoint move_p) { l1.ps += move_p; l1.pe += move_p; return l1; } public static gL operator +(gL l1, gPP move_p) { l1.ps += move_p.p; l1.pe += move_p.p; return l1; } public static gL operator +(gL l1, gP move_p) { l1.ps += move_p.p; l1.pe += move_p.p; return l1; } public static gL operator -(gL l1, gPoint move_p) { l1.ps -= move_p; l1.pe -= move_p; return l1; } public static gL operator -(gL l1, gPP move_p) { l1.ps -= move_p.p; l1.pe -= move_p.p; return l1; } public static gL operator -(gL l1, gP move_p) { l1.ps -= move_p.p; l1.pe -= move_p.p; return l1; } } /// <summary> /// ARC 数据类型 /// </summary> public struct gA { public gA(double ps_x, double ps_y, double pc_x, double pc_y, double pe_x, double pe_y, double width_, bool ccw_) { this.ps = new gPoint(ps_x, ps_y); this.pc = new gPoint(pc_x, pc_y); this.pe = new gPoint(pe_x, pe_y); this.negative = false; this.ccw = ccw_; this.symbols = "r" + width_.ToString(); this.attribut = string.Empty; this.width = width_; } public gA(gPoint ps_, gPoint pc_, gPoint pe_, double width_, bool ccw_ = false) { this.ps = ps_; this.pc = pc_; this.pe = pe_; this.negative = false; this.ccw = ccw_; this.symbols = "r" + width_.ToString(); this.attribut = string.Empty; this.width = width_; } public gPoint ps; public gPoint pe; public gPoint pc; public bool negative;//polarity-- positive negative public bool ccw; //direction-- cw ccw public string symbols; public string attribut; public double width; public static gA operator +(gA arc1, gPoint move_p) { arc1.ps += move_p; arc1.pe += move_p; arc1.pc += move_p; return arc1; } public static gA operator +(gA arc1, gPP move_p) { arc1.ps += move_p.p; arc1.pe += move_p.p; arc1.pc += move_p.p; return arc1; } public static gA operator +(gA arc1, gP move_p) { arc1.ps += move_p.p; arc1.pe += move_p.p; arc1.pc += move_p.p; return arc1; } public static gA operator -(gA arc1, gPoint move_p) { arc1.ps -= move_p; arc1.pe -= move_p; arc1.pc -= move_p; return arc1; } public static gA operator -(gA arc1, gPP move_p) { arc1.ps -= move_p.p; arc1.pe -= move_p.p; arc1.pc -= move_p.p; return arc1; } public static gA operator -(gA arc1, gP move_p) { arc1.ps -= move_p.p; arc1.pe -= move_p.p; arc1.pc -= move_p.p; return arc1; } } /// <summary> /// Text 文本数据类型 简易型 更复杂的需要扩展 /// </summary> public struct gT { public gPoint ps; public string font; public bool negative;//polarity-- positive negative public int angle; public bool mirror; public double x_size; public double y_size; public double width; public string Text; public string attribut; } /// <summary> /// Surface 坐标泛型集类1 /// </summary> public struct gSur_Point { public gSur_Point(double x_val, double y_val, byte type_point_) { this.p.x = x_val; this.p.y = y_val; this.type_point = type_point_; } public gSur_Point(gPoint p, byte type_point_) { this.p = p; this.type_point = type_point_; } public gPoint p; /// <summary> /// 0为折点 1为顺时针 2为逆时针 /// </summary> public byte type_point; } /// <summary> /// Surface 坐标泛型集类2 /// </summary> public class gSur_list { public List<gSur_Point> sur_list = new List<gSur_Point>(); /// <summary> /// 是否为空洞 /// </summary> public bool is_hole { get; set; } /// <summary> /// 是否逆时针 /// </summary> public bool is_ccw { get; set; } } /// <summary> /// Surface 坐标泛型集类3 /// </summary> public class gS { public List<gSur_list> sur_group = new List<gSur_list>(); /// <summary> /// 是否为负 polarity-- P N /// </summary> public bool negative { get; set; } public string attribut { get; set; } } /// <summary> /// 整层Layer坐标泛型集类 /// </summary> public class gLayer //坐标 { public List<gP> Plist = new List<gP>(); public List<gL> Llist = new List<gL>(); public List<gA> Alist = new List<gA>(); public List<gT> Tlist = new List<gT>(); public List<gS> Slist = new List<gS>(); }
标签: #如何把多条直线合并成一条多段线图解