前言:
现时看官们对“python中generator”大约比较看重,朋友们都需要分析一些“python中generator”的相关资讯。那么小编也在网上搜集了一些对于“python中generator””的相关内容,希望姐妹们能喜欢,朋友们一起来学习一下吧!背景知识:
在Python中一个function要运行起来,它在python VM中需要三个东西。
PyCodeObject,这个保存了函数的代码PyFunctionObject,这个代表一个虚拟机中的一个函数对象PyFrameObject,这个代表了函数运行时的调用链和堆栈
Python正是通过这三样东西模拟0x86的函数调用的
在python中 coroutine(协程)被称为的generator,这两个东西在python其实是同一个东东,之所以如此称呼是因为它有迭代器的功能,但是又可以只消耗很少的内存。不吃能存,又产生数据,称为generator还是很符合状况的。
Python中的generotor是一种PyFunctionCode 和PyFrameObject的包装,这个生成器是有自己独立 value stack 的。在加上它能在执行function code的中途返回,并且保存PyFrameObject的状态。所以就有类似线程的一个主要作用了:能够被调度。
对于操作系统而言,它能够调度的只有线程,而且这种调度发生在内核态,调度时机对于程序员来说是不可知的。一般发生wait某个东西(锁、网络数据、磁盘数据)、时间片用完的时候,这个时候如果是非阻塞的返回,但是当前任务因为缺少数据又不能继续执行,作为要榨干CPU的程序员不能浪费掉分配到时间片,所以应该切换任务。如果一个线程代表一个任务的话,那么在内核就多出一个线程对象。增加内存和调度程序的负担,如果能够在用户态有一种能够由程序员来控制调度的任务,便不用在内核态增加线程对象,任务调度由程序员负责。这个在用户态可以调度的东西就是coroutine了。因为可以被切换,在一个线程内,它应该有自己的堆栈、自己寄存器(状态)-------如果用C/C++这种语言实现的话,如果是在VM中实现,它在发生切换时,只要保持代表当前任务(其实就是函数)状态的PyFrameObject的状态就可以了。
CPython generator涉及的数据结构和对象
1.PyGen_Type
PyTypeObject PyGen_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "generator", /* tp_name */ sizeof(PyGenObject), /* tp_basicsize */ .........省略 PyObject_GenericGetAttr, /* tp_getattro */ ....... 省略 (traverseproc)gen_traverse, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ offsetof(PyGenObject, gi_weakreflist), /* tp_weaklistoffset */ PyObject_SelfIter, /* tp_iter */ (iternextfunc)gen_iternext, /* tp_iternext */ gen_methods, /* tp_methods */ gen_memberlist, /* tp_members */ gen_getsetlist, /* tp_getset */ .......省略 gen_del, /* tp_del */ };
从PyGen_Type这个对象对tp_iter,tp_iternext的设置来看,说明generator是实现了iterator protocol了,可以在for 语句中迭代它。
2.PyCodeObject、PyFrameObject,PyFunctionObject
3.PyGenObject
typedef struct { PyObject_HEAD /* The gi_ prefix is intended to remind of generator-iterator. */ /* Note: gi_frame can be NULL if the generator is "finished" */ //PyFrameObject struct _frame *gi_frame; /* True if generator is being executed. */ //状态 int gi_running; /* The code object backing the generator */ //PyCodeObject PyObject *gi_code; /* List of weak reference. */ PyObject *gi_weakreflist; } PyGenObject;
PyGenObject中的gi_running表示状态 0:没有正在运行,1:正在运行,用frame.f_lasti==-1表示没有启动过,因为没有运行过bytecode,所以frame的last instuction offset 会是-1,gi_code对应generator的方法代码,gi_frame为PyFrameObject,用于保存当前generator字节码执行的状态,可以知道generator只能对应一个Frame,它不肯有嵌套的Frame了,也就是不能在generator调用的函数中返回到send/next点,这个对与它的应用来说,会是一个限制,如果业务复杂会导致generator的代码比较臃肿。
CPython 中generator的实现分析:
以这段python代码为分析对象
def gen: x=yield 1 print x x=yield 2 g=gen g.next print g.send("sender")
对应的Python bytecode为
源码行号python代码字节码偏移字节码字节码参数注释1def gen:0LOAD_CONST
0 (<code object gen )
这里定义了一个PyFunctionObject,
对应的PyCodeObject
有一个flag(CO_GENERATOR)
标记是一个generator
3MAKE_FUNCTION0 6STORE_NAME0(gen)gen=PyFunctionObject 7g=gen9LOAD_NAME0(gen) 12CALL_FUNCTION
在PyEval_EvalCodeEX中,因为gen保存的
PyFunctionObject,
对应的PyCodeObject.co_flags
有CO_GENERATOR标记,
它直接返回返回一个PyGenObject
15STORE_NAME1(g) 9 g.next18 LOAD_NAME 1(g) 21 LOAD_ATTR 2 (next)
PyObject_GetAttr(g,'next')
PyGen_Type.tp_getattro
此时tp_getattro=PyObject_GenericGetAttr
得到wrappertype
这个wrapper包含了generator,
24 CALL_FUNCTION 0
在call 的时候,转而调用 generator.next
就是gen_iternext,之后转到
gen_send_ex这里,
27 POP_TOP 10 28 LOAD_NAME 1 (g) 31 LOAD_ATTR 3 (send) 34 LOAD_CONST 1 ('sender') 37 CALL_FUNCTION 1
这里转到
gen_send(PyGenObject *gen,
PyObject *arg)
40 PRINT_ITEM 41 PRINT_NEWLINE 42 LOAD_CONST 2 (None) 45 RETURN_VALUE
在分析CPython源码的时候会遇到许多的PyMethodDescrObject、PyMemberDescrObject、PyGetSetDescrObject、PyWrapperDescrObject,是因为Python语言设计的比较灵活,不同的方法、属性,有不同的获取方法,另外不同的方法有不同的参数,所以调用的方式也不一样啊,所以对应的C代码应该有不同的策略,需要包装起到这个策略作用。这些Descr都是一些外层的包装对象,只是为了方便管理而已。在class object初始化的时候保存到相应的type.tp_dict中.
coroutine的应用:
coroutine因为得不到操作系统的主动调用,要有程序员来控制调度时机,在用户态的调度不适合模拟实时的状体,但是非常适合做成无关时间的状态改变,我们以电商快递商品过程的为例,一个商品在卖家到达买家大致会经历下面几个状态:待售、已售、商品在起始城市、商品在中间城市、商品到达目的城市、开始投递、到达买家手中。
快递商品状态转换图
电商商品状态切换伪代码:
from collections import namedtuple State=namedtuple('State','statename action') def commodity(id): #待售状态 action=yield State('forsale','online') #已售状体 if action=='sellout': action =yield State('sellout','postman1') elif action=='offline': return #在出发城市快递点状态 if action=='store1': action=yield State('store1','store in garage') else: return #已产生中间路径状态 middleCities=generateRoute(id) if action=='route': action=yield State('store1_routed','caculate route') else: return l=len(middleCities) for city in middleCities: if action=='next': if city==middleCities[l-1]: #已经到达目的城市状态 action =yield State('destination',city) else: #中间城市流转状态 action=yield State('middle_city',city) #在目的城市开始投递状态 if 'deliver': action=yield State('delivering','postman is delivering') else: return #被买家接受状态 if action=='accept': yield State('accepted','finish')
标签: #python中generator