龙空技术网

实例演示 | 用Kdump分析内核奔溃原因

嵌入式开发胖哥 681

前言:

现在同学们对“oracle12c配置afd”大体比较注重,你们都需要学习一些“oracle12c配置afd”的相关知识。那么小编在网络上网罗了一些关于“oracle12c配置afd””的相关文章,希望兄弟们能喜欢,姐妹们快快来了解一下吧!

本文主要介绍kdump服务和crash的使用,并结合一个简单的实例演示如何分析内核奔溃的原因。本文基于linux kernel 4.19, 体系结构为aarch64。

kdump概述kdump

kdump 是一种先进的基于 kexec 的内核崩溃转储机制,用来捕获kernel crash(内核崩溃)的时候产生的crash dump。当内核产生错误时,kdump会将内存导出为vmcore保存到磁盘。

kdump流程

当系统崩溃时,kdump 使用 kexec 启动到第二个内核。第二个内核通常叫做捕获内核,以很小内存启动以捕获转储镜像。第一个内核启动时会保留一段内存给kdump用。

kdump的配置系统启动时为crashkernel保留内存

可以在kernel command line中加入如下参数:crashkernel=size[@offset]。保留内存是否预留成功,可以通过cat /proc/meminfo查看。。

cat /proc/meminfo | grep Crash

安装kexec-toools

yum install kexec-tools

kexec-tool推荐使用rpm方式安装,使用时需要和内核版本配套。

启动kdump服务

systemctl start kdump.service // 启动kdump服务

service kdump status // 查看kdump状态

测试kdump是否可以正常dump

echo c > /proc/sysrq-trigger

如果没有问题,系统会自动重启,重启后可以看到在/var/crash/目录下生成了coredump文件。

qemu使用kdump

我们经常会使用qemu去启动虚拟机。qemu启动的内核发生错误也可以用kdump生成vmcore文件。

首先先将qemu的panic重启关闭,防止coredump的时候发生了reboot

echo 0 > /proc/sys/kernel/panic

触发kernel panic

echo c > /proc/sysrq-trigger

kernel panic后,使得qemu进入monitor模式

ctrl + A, ---> c, qemu进入monitor模式

进入monitor模式后,进行coredump

dump-guest-memory -z xxx-vmcore

如下图所示,成功在qemu 的kernel panic后,获得了coredump文件。

使用crash分析内核奔溃转储文件

在内核奔溃后,如果部署了kdump, 会在/var/crash目录中找到vmcore转储文件,vmcore文件可以配合crash工具进行分析。

crash的版本要和内核的版本保持一致, 比如上面成功dump了qemu arm64的coredump文件,就需要配套的arm64的crash工具进行分析,否则会报兼容性错误。

编译arm64 crash工具:

下载:

编译安装:

$ tar -xf crash-7.2.8.tar.gz

$ cd crash-7.2.8/

$ make target=arm64

安装完成后,使用crash工具分析vmcore文件, vmlinux在编译内核时会在根目录下生成。

crash vmcore vmlinux

crash常用命令bt: 查看函数调用栈

crash> btPID: 1452   TASK: ffff80007b0f1a80  CPU: 1   COMMAND: "sh" #0 [ffff00000aeb3900] __delay at ffff000008af2528 #1 [ffff00000aeb3930] __const_udelay at ffff000008af2488 #2 [ffff00000aeb3940] panic at ffff0000080d7f04 #3 [ffff00000aeb3a20] die at ffff00000808cb18 #4 [ffff00000aeb3a60] die_kernel_fault at ffff00000809f7e8 #5 [ffff00000aeb3a90] __do_kernel_fault at ffff00000809f07c #6 [ffff00000aeb3ac0] do_page_fault at ffff00000809f12c #7 [ffff00000aeb3b30] do_translation_fault at ffff00000809f574 #8 [ffff00000aeb3b40] do_mem_abort at ffff000008081448 #9 [ffff00000aeb3ca0] el1_ia at ffff00000808318c     PC: ffff0000085dc0d0  [sysrq_handle_crash+32]     LR: ffff0000085dc0bc  [sysrq_handle_crash+12]     SP: ffff00000aeb3cb0  PSTATE: 40000005    X29: ffff00000aeb3cb0  X28: ffff80007b0f1a80  X27: 0000000000000000    X26: 0000000000000000  X25: 0000000056000000  X24: 0000000000000000    X23: 0000000000000007  X22: ffff000009289000  X21: ffff000009289400    X20: 0000000000000063  X19: ffff0000091a1000  X18: ffffffffffffffff    X17: 0000000000000000  X16: 0000000000000000  X15: ffff0000091896c8    X14: ffff0000892ed70f  X13: ffff0000092ed71d  X12: ffff0000091a1000    X11: 0000000005f5e0ff  X10: ffff000009189940   X9: 00000000ffffffd0     X8: ffff000008602b08   X7: 54203a2071527379   X6: 00000000000000d2     X5: 0000000000000000   X4: 0000000000000000   X3: ffffffffffffffff     X2: 2c501196acfc7700   X1: 0000000000000000   X0: 0000000000000001#10 [ffff00000aeb3cb0] sysrq_handle_crash at ffff0000085dc0cc#11 [ffff00000aeb3cc0] __handle_sysrq at ffff0000085dc6cc#12 [ffff00000aeb3d00] write_sysrq_trigger at ffff0000085dcc60#13 [ffff00000aeb3d20] proc_reg_write at ffff0000082ac7e4#14 [ffff00000aeb3d40] __vfs_write at ffff00000823a9cc#15 [ffff00000aeb3de0] vfs_write at ffff00000823ace0#16 [ffff00000aeb3e20] ksys_write at ffff00000823afd4#17 [ffff00000aeb3e70] __arm64_sys_write at ffff00000823b064#18 [ffff00000aeb3e80] el0_svc_common at ffff000008094ef4#19 [ffff00000aeb3eb0] el0_svc_handler at ffff000008094fa8#20 [ffff00000aeb3ff0] el0_svc at ffff000008084044     PC: 0000000000401a58   LR: 00000000004b2be4   SP: 0000ffffe68f8e10    X29: 0000ffffe68f9500  X28: 0000ffffe68f9fba  X27: 000000000056f9c0    X26: 00000000005ed000  X25: 0000000000000000  X24: 0000000000000020    X23: 0000000011710110  X22: 00000000005ed000  X21: 0000000000000002    X20: 0000000011710110  X19: 0000000000000001  X18: 0000000000000001    X17: 0000000000000000  X16: 0000000000000000  X15: 0000000000000008    X14: 0000000000000012  X13: 726567676972742d  X12: 0101010101010101    X11: 0000005000564818  X10: 0101010101010101   X9: fffffffffffffff0     X8: 0000000000000040   X7: 0000000011710120   X6: 0080808080808080     X5: 0000000000000000   X4: 0000000000000063   X3: 0000000011710111     X2: 0000000000000002   X1: 0000000011710110   X0: 0000000000000001    ORIG_X0: 0000000000000001  SYSCALLNO: 40  PSTATE: 80000000
log: 查看内核dmesg日志
crash> log[    0.000000] Booting Linux on physical CPU 0x0000000000 [0x411fd070][    0.000000] Linux version 4.20.0-rc4-00007-gef78e5e (root@localhost.localdomain) (gcc version 7.3.1 20180425 [linaro-7.3-2018.05 revision d29120a424ecfbc167ef90065c0eeb7f91977701] (Linaro GCC 7.3-2018.05)) #3 SMP PREEMPT Wed Jan 15 07:52:10 PST 2020[    0.000000] Machine model: linux,dummy-virt[    0.000000] efi: Getting EFI parameters from FDT:[    0.000000] efi: UEFI not found.[    0.000000] cma: Reserved 32 MiB at 0x00000000be000000[    0.000000] NUMA: No NUMA configuration found[    0.000000] NUMA: Faking a node at [mem 0x0000000040000000-0x00000000bfffffff][    0.000000] NUMA: NODE_DATA [mem 0xbdfea840-0xbdfebfff][    0.000000] Zone ranges:[    0.000000]   DMA32    [mem 0x0000000040000000-0x00000000bfffffff][    0.000000]   Normal   empty[    0.000000] Movable zone start for each node[    0.000000] Early memory node ranges[    0.000000]   node   0: [mem 0x0000000040000000-0x00000000bfffffff][    0.000000] Initmem setup node 0 [mem 0x0000000040000000-0x00000000bfffffff][    0.000000] On node 0 totalpages: 524288[    0.000000]   DMA32 zone: 8192 pages used for memmap[    0.000000]   DMA32 zone: 0 pages reserved[    0.000000]   DMA32 zone: 524288 pages, LIFO batch:63[    0.000000] psci: probing for conduit method from DT.[    0.000000] psci: PSCIv0.2 detected in firmware.[    0.000000] psci: Using standard PSCI v0.2 function IDs[    0.000000] psci: Trusted OS migration not required[    0.000000] random: get_random_bytes called from start_kernel+0xa8/0x418 with crng_init=0[    0.000000] percpu: Embedded 23 pages/cpu @(____ptrval____) s55704 r8192 d30312 u94208[    0.000000] pcpu-alloc: s55704 r8192 d30312 u94208 alloc=23*4096[    0.000000] pcpu-alloc: [0] 0 [0] 1 [    0.000000] Detected PIPT I-cache on CPU0[    0.000000] CPU features: enabling workaround for ARM erratum 832075[    0.000000] CPU features: enabling workaround for ARM erratum 834220[    0.000000] CPU features: enabling workaround for EL2 vector hardening[    0.000000] CPU features: detected: Kernel page table isolation (KPTI)[    0.000000] Built 1 zonelists, mobility grouping on.  Total pages: 516096[    0.000000] Policy zone: DMA32[    0.000000] Kernel command line: rdinit=/linuxrc console=ttyAMA0[    0.000000] Memory: 2009884K/2097152K available (10876K kernel code, 1414K rwdata, 5100K rodata, 1344K init, 380K bss, 54500K reserved, 32768K cma-reserved)[    0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=2, Nodes=1[    0.000000] rcu: Preemptible hierarchical RCU implementation.[    0.000000] rcu:     RCU restricting CPUs from NR_CPUS=64 to nr_cpu_ids=2.[    0.000000]  Tasks RCU enabled.[    0.000000] rcu: RCU calculated value of scheduler-enlistment delay is 25 jiffies.[    0.000000] rcu: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=2[    0.000000] NR_IRQS: 64, nr_irqs: 64, preallocated irqs: 0[    0.000000] GICv2m: range[mem 0x08020000-0x08020fff], SPI[80:143][    0.000000] arch_timer: cp15 timer(s) running at 62.50MHz (virt).[    0.000000] clocksource: arch_sys_counter: mask: 0xffffffffffffff max_cycles: 0x1cd42e208c, max_idle_ns: 881590405314 ns
struct: 查看数据结构
crash> struct task_struct ffff0000085dc0d0 -xstruct task_struct {  thread_info = {    flags = 0xa8c17bfd39000020,     addr_limit = 0xd503201fd65f03c0,     preempt_count = 0xa9bf7bfd  },   state = 0x97ec827fd50342ff,   stack = 0xd65f03c0a8c17bfd,   usage = {    counter = 0xa9bd7bfd  },   flags = 0x910003fd,   ptrace = 0xa90153f3,   wake_entry = {    next = 0xaa0103f4911b2262  },   on_cpu = 0xf9400041,   cpu = 0xf90017a1,   wakee_flips = 0xd2800001,   wakee_flip_decay_ts = 0x37f8018097f909a2,   last_wakee = 0xf10bfc7ff94013a3,   recent_used_cpu = 0x54000228,   wake_cpu = 0xb0006561,   on_rq = 0x91018021,   prio = 0xf9401284,   static_prio = 0x52800000,   normal_prio = 0xb9404022,   rt_priority = 0x79000083,   sched_class = 0x911b2273b9004022,   se = {    load = {      weight = 0x940b05adf9400013,       inv_weight = 0x91012260    },     runnable_weight = 0x97edbddd91052260,     run_node = {      __rb_parent_color = 0x940b05c5aa1403e0,       rb_right = 0x97f0ec85aa1303e0,       rb_left = 0xa8c27bfda94153f3    },     group_node = {      next = 0xd503201fd65f03c0,       prev = 0x52800021a9bf7bfd    },     on_rq = 0x910003fd,     exec_start = 0xd280000097f251d0,     sum_exec_runtime = 0xa8c17bfd97ec8318,     vruntime = 0xd503201fd65f03c0,     prev_sum_exec_runtime = 0x910003fda9be7bfd,     nr_migrations = 0xd1012013f9000bf3,     statistics = {<No data fields>},     depth = 0x39434660,     parent = 0x52800020f9000fb4,     cfs_rq = 0xb940ce7439034a60,     my_q = 0x52800023d5033f9f,     avg = {      last_update_time = 0x940b0cf552800001,       load_sum = 0x52800003aa1303e0,       runnable_load_sum = 0x5280002152800c62,       util_sum = 0x940b0cf0, 

struct -o [struct] : 显示结构体中成员的偏移

struct [struct] [address] : 显示对应地址结构体的值

[struct] [address] :简化形式显示对应地址结构体的值

[struct] [address] -xo: 打印结构体定义和大小

[struct].member[address]: 显示某个成员的值

rd: 读取内存内容

crash> rd ffff0000085dc0d0 32ffff0000085dc0d0:  a8c17bfd39000020 d503201fd65f03c0    ..9.{...._.. ..ffff0000085dc0e0:  910003fda9bf7bfd 97ec827fd50342ff   .{.......B......ffff0000085dc0f0:  d65f03c0a8c17bfd 910003fda9bd7bfd   .{...._..{......ffff0000085dc100:  b0005d73a90153f3 aa0103f4911b2262   .S..s]..b"......ffff0000085dc110:  f90017a1f9400041 910083a2d2800001   A.@.............ffff0000085dc120:  37f8018097f909a2 f10bfc7ff94013a3   .......7..@.....ffff0000085dc130:  b000656154000228 f940128491018021   (..Tae..!.....@.ffff0000085dc140:  b940402252800000 1100044279000083   ...R"@@....yB...ffff0000085dc150:  911b2273b9004022 f9400261f94017a2   "@..s"....@.a.@.ffff0000085dc160:  b50000c1ca010041 a8c37bfda94153f3   A........SA..{..ffff0000085dc170:  128002a0d65f03c0 97ebee0b17fffff7   .._.............ffff0000085dc180:  910003fda9be7bfd aa0003f4a90153f3   .{.......S......ffff0000085dc190:  940b05adf9400013 97ec5fb991012260   ..@.....`"..._..ffff0000085dc1a0:  97edbddd91052260 940b05c5aa1403e0   `"..............ffff0000085dc1b0:  97f0ec85aa1303e0 a8c27bfda94153f3   .........SA..{..ffff0000085dc1c0:  d503201fd65f03c0 52800021a9bf7bfd   .._.. ...{..!..R

rd [addr] [len]: 查看指定地址,长度为len的内存

rd -S [addr][len]: 尝试将地址转换为对应的符号

rd [addr] -e [addr] : 查看指定内存区域内容

dis: 进行返汇编,查看对应地址的代码逻辑

嵌入式物联网需要学的东西真的非常多,千万不要学错了路线和内容,导致工资要不上去!

无偿分享大家一个资料包,差不多150多G。里面学习内容、面经、项目都比较新也比较全!某鱼上买估计至少要好几十。

点击这里找小助理0元领取:

crash> dis -r ffff0000085dc0d00xffff0000085dc0b0 <sysrq_handle_crash>:        stp     x29, x30, [sp,#-16]!0xffff0000085dc0b4 <sysrq_handle_crash+4>:      mov     x29, sp0xffff0000085dc0b8 <sysrq_handle_crash+8>:      bl      0xffff000008141a48 <__rcu_read_unlock>0xffff0000085dc0bc <sysrq_handle_crash+12>:     adrp    x1, 0xffff0000092e9000 <xen_dummy_shared_info+984>0xffff0000085dc0c0 <sysrq_handle_crash+16>:     mov     w0, #0x1                        // #10xffff0000085dc0c4 <sysrq_handle_crash+20>:     str     w0, [x1,#1448]0xffff0000085dc0c8 <sysrq_handle_crash+24>:     dsb     st0xffff0000085dc0cc <sysrq_handle_crash+28>:     mov     x1, #0x0                        // #00xffff0000085dc0d0 <sysrq_handle_crash+32>:     strb    w0, [x1]
crash> dis -f ffff0000085dc0d00xffff0000085dc0d0 <sysrq_handle_crash+32>:     strb    w0, [x1]0xffff0000085dc0d4 <sysrq_handle_crash+36>:     ldp     x29, x30, [sp],#160xffff0000085dc0d8 <sysrq_handle_crash+40>:     ret
ps: 查看线程状态
crash> ps   PID    PPID  CPU       TASK        ST  %MEM     VSZ    RSS  COMM>     0      0   0  ffff000009192580  RU   0.0       0      0  [swapper/0]      0      0   1  ffff80007bbc1a80  RU   0.0       0      0  [swapper/1]      1      0   0  ffff80007bb68000  IN   0.0    2196     60  linuxrc      2      0   0  ffff80007bb68d40  IN   0.0       0      0  [kthreadd]      3      2   0  ffff80007bb69a80  ID   0.0       0      0  [rcu_gp]      4      2   0  ffff80007bb6a7c0  ID   0.0       0      0  [rcu_par_gp]      5      2   0  ffff80007bb6b500  ID   0.0       0      0  [kworker/0:0]      6      2   0  ffff80007bb6c240  ID   0.0       0      0  [kworker/0:0H]      7      2   0  ffff80007bb6cf80  ID   0.0       0      0  [kworker/u4:0]      8      2   0  ffff80007bb6dcc0  ID   0.0       0      0  [mm_percpu_wq]      9      2   0  ffff80007bb6ea00  IN   0.0       0      0  [ksoftirqd/0]     10      2   0  ffff80007bbc0000  ID   0.0       0      0  [rcu_preempt]     11      2   0  ffff80007bbc0d40  IN   0.0       0      0  [migration/0]     12      2   0  ffff80007bbc27c0  IN   0.0       0      0  [cpuhp/0]     13      2   1  ffff80007bbc3500  IN   0.0       0      0  [cpuhp/1]     14      2   1  ffff80007bbc4240  IN   0.0       0      0  [migration/1]     15      2   1  ffff80007bbc4f80  IN   0.0       0      0  [ksoftirqd/1]     16      2   1  ffff80007bbc5cc0  ID   0.0       0      0  [kworker/1:0]     17      2   1  ffff80007bbc6a00  ID   0.0       0      0  [kworker/1:0H]     18      2   0  ffff80007bbd0000  IN   0.0       0      0  [kdevtmpfs]     19      2   0  ffff80007bbd0d40  ID   0.0       0      0  [netns]     20      2   0  ffff80007b040000  ID   0.0       0      0  [kworker/u4:1]     21      2   1  ffff80007b040d40  IN   0.0       0      0  [rcu_tasks_kthre]     42      2   1  ffff80007b0f3500  ID   0.0       0      0  [kworker/1:1]     43      2   0  ffff80007b0f4240  ID   0.0       0      0  [kworker/0:1]     49      2   1  ffff80007b0f4f80  ID   0.0       0      0  [kworker/u4:2]     56      2   1  ffff80007b140000  IN   0.0       0      0  [kauditd]    212      2   0  ffff80007b26ea00  ID   0.0       0      0  [kworker/u4:3]    256      2   0  ffff80007b336a00  ID   0.0       0      0  [kworker/u4:4]    471      2   1  ffff80007b2d6a00  IN   0.0       0      0  [oom_reaper]    472      2   1  ffff80007b2d5cc0  ID   0.0       0      0  [writeback]    474      2   0  ffff80007b330d40  IN   0.0       0      0  [kcompactd0]    475      2   0  ffff80007b3327c0  IN   0.0       0      0  [ksmd]    476      2   0  ffff80007b2d1a80  IN   0.0       0      0  [khugepaged]    477      2   0  ffff80007b2d0000  ID   0.0       0      0  [crypto]    478      2   1  ffff80007b2d0d40  ID   0.0       0      0  [kintegrityd]    480      2   1  ffff80007b2d27c0  ID   0.0       0      0  [kblockd]    501      2   1  ffff80007b2d3500  ID   0.0       0      0  [tpm_dev_wq]    508      2   1  ffff80007b2d4240  ID   0.0       0      0  [ata_sff]    541      2   0  ffff80007ac98000  ID   0.0       0      0  [edac-poller]    551      2   1  ffff80007b044240  ID   0.0       0      0  [devfreq_wq]    561      2   1  ffff80007b268000  IN   0.0       0      0  [watchdogd]    647      2   0  ffff80007b268d40  ID   0.0       0      0  [rpciod]    648      2   1  ffff80007b26c240  ID   0.0       0      0  [kworker/u5:0]    649      2   0  ffff80007ad04f80  ID   0.0       0      0  [xprtiod]    718      2   1  ffff80007bbd3500  IN   0.0       0      0  [kswapd0]    815      2   1  ffff80007ad00000  ID   0.0       0      0  [nfsiod]   1250      2   0  ffff80007b26dcc0  ID   0.0       0      0  [vfio-irqfd-clea]>  1452      1   1  ffff80007b0f1a80  RU   0.0    2196     76  sh

ps -p [pid]: 显示进程父子关系

ps -t [pid]: 显示进程运行时间

kmem: 查看内核内存使用情况

crash> kmem -i                 PAGES        TOTAL      PERCENTAGE    TOTAL MEM   511276         2 GB         ----         FREE   506631       1.9 GB   99% of TOTAL MEM         USED     4645      18.1 MB    0% of TOTAL MEM       SHARED      353       1.4 MB    0% of TOTAL MEM      BUFFERS        0            0    0% of TOTAL MEM       CACHED      480       1.9 MB    0% of TOTAL MEM         SLAB     1930       7.5 MB    0% of TOTAL MEM   TOTAL HUGE        0            0         ----    HUGE FREE        0            0    0% of TOTAL HUGE   TOTAL SWAP        0            0         ----    SWAP USED        0            0    0% of TOTAL SWAP    SWAP FREE        0            0    0% of TOTAL SWAP COMMIT LIMIT   255638     998.6 MB         ----    COMMITTED      479       1.9 MB    0% of TOTAL LIMITcrash> 

kmem -i: 查看内存整体使用情况

kmem -s: 查看slab使用情况

kmem [addr]: 搜索地址所属的内存结构

更多其它命令通过help查看内核panic实例

内核访问空指针产生panic。

驱动制作

编写一个驱动,构造一个内核模块访问空指针的异常,演示如何使用crash分析内核奔溃的原因。

include <linux/module.h>#include <linux/kernel.h>#include <linux/atomic.h>#include <linux/slab.h>struct my_struct {        unsigned long head;        spinlock_t lock;};int *addr = 0; //null pointervoid panic_foo(struct my_struct *ms){        int *p = addr;        spin_lock(&ms->lock);        if (ms->head == 10) {                *p = 0xFFFF;        } else if (ms->head = 0) {                // do sth        } else {                // do sth        }        spin_unlock(&ms->lock);}int panic_kernel_init(void){        struct my_struct *ms = kzalloc(sizeof(struct my_struct), GFP_KERNEL);        spin_lock_init(&ms->lock);        ms->head = 10;        panic_foo(ms);        return 0;}void panic_kernel_exit(void){}module_init(panic_kernel_init);module_exit(panic_kernel_exit);
obj-m := panic-kernel.oKERNEL_DIR := /home/linuxPWD := $(shell pwd)all:        make -C $(KERNEL_DIR) SUBDIRS=$(PWD) modulesclean:        rm *.o *.ko *.mod.c.PHONY: clean

将编好的驱动打包进根文件系统, 启动后插入内核模块。

panic 分析

内核的call trace如上图所示, 将对应的文件反汇编,找到问题出现对应的代码。

aarch64-linux-gnu-objdump -S panic-kernel.o > test.txt

截取部分反汇编如下:

Disassembly of section .text:0000000000000000 <panic_foo>:int *addr = 0; //null pointervoid panic_foo(struct my_struct *ms){   0:   a9bd7bfd        stp     x29, x30, [sp, #-48]!   4:   910003fd        mov     x29, sp   8:   a90153f3        stp     x19, x20, [sp, #16]   c:   aa0003f3        mov     x19, x0        int *p = addr;  10:   90000000        adrp    x0, 0 <panic_foo>        raw_spin_lock_init(&(_lock)->rlock);            \} while (0)

从汇编代码可以看出, panic_foo函数的参数(x0)最终保存在x19寄存器。我们现在想要知道出现问题时,代码走的是哪一个分支。

配合crash进行分析,先导入模块符号表:

crash> mod -S my_module     MODULE       NAME           SIZE  OBJECT FILEffff000000ae2000  panic_kernel  16384  my_module/panic-kernel.o 

使用crash 查看出问题时结构体的值,确认函数走的是哪个分支。函数的参数是x19:

crash> struct my_struct ffff8000fa4d9780struct my_struct {  head = 10,   lock = {    {      rlock = {        raw_lock = {          {            val = {              counter = 1            },             {              locked = 1 '\001',               pending = 0 '\000'            },             {              locked_pending = 1,               tail = 0            }          }        }      }    }  }}

从打印的之来看,head成员的值为10, 可以确定代码走的是哪一个分支。

再结合之前的反汇编代码, 出错的位置在pc: panic_foo +0x54。pc保存的是栈顶指针,lr保存的是函数返回的地址(x30)

static __always_inline void spin_unlock(spinlock_t *lock){        raw_spin_unlock(&lock->rlock);  38:   aa1403e0        mov     x0, x20  3c:   94000000        bl      0 <_raw_spin_unlock>        } else {                // do sth        }        spin_unlock(&ms->lock);}  40:   f94013f5        ldr     x21, [sp, #32]  44:   a94153f3        ldp     x19, x20, [sp, #16]  48:   a8c37bfd        ldp     x29, x30, [sp], #48  4c:   d65f03c0        ret                *p = 0xFFFF;  50:   529fffe0        mov     w0, #0xffff                     // #65535  54:   b90002a0        str     w0, [x21]  58:   aa1403e0        mov     x0, x20  5c:   94000000        bl      0 <_raw_spin_unlock>}

偏移54的位置是把w0的值保存到x21, 而x21的地址是0。w0的值是mov w0, 0xffff直接赋值得来的。所以这里是将0xffff直接写到0地址导致的问题。

原文作者:人人极客

原文标题:实例演示 | 用Kdump分析内核奔溃原因

原文链接:

标签: #oracle12c配置afd