龙空技术网

数学 第二章 函数 反比例函数

华吟时代一卢老师 112

前言:

现时姐妹们对“平滑曲线函数”大致比较关怀,咱们都想要剖析一些“平滑曲线函数”的相关知识。那么小编同时在网络上汇集了一些关于“平滑曲线函数””的相关文章,希望朋友们能喜欢,兄弟们一起来了解一下吧!

1. 反比例函数:形如

的函数称为反比例函数。其他形式

2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点

3. 性质:

当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

MK19 一次函数

一.常量、变量:

在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。

二、函数的概念:

函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.

三、函数中自变量取值范围的求法:

(1)用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

(3)用二次根式表示的函数,自变量的取值范围是被开方数a≥0。

(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.

五、用描点法画函数的图象的一般步骤

1、列表(表中给出一些自变量的值及其对应的函数值。)

注意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。

六、函数有3种表示形式:

(1)列表法

(2)图像法

(3)解析式法

需要免费的数学专业指导,请私信我。

标签: #平滑曲线函数