前言:
今天朋友们对“kmp算法的时间复杂度”都比较关心,朋友们都需要知道一些“kmp算法的时间复杂度”的相关文章。那么小编也在网络上网罗了一些对于“kmp算法的时间复杂度””的相关知识,希望兄弟们能喜欢,小伙伴们一起来学习一下吧!什么是KMP算法及一些基本概念
首先,什么是KMP算法。这是一个字符串匹配算法,对暴力的那种一一比对的方法进行了优化,使时间复杂度大大降低(我不会算时间复杂度。。。,目前也只能这么理解,还有KMP是取的三个发明人的名字首字母组成的名字)。
然后是一些基本概念:
1、s[ ]是模式串,即比较长的字符串。
2、p[ ]是模板串,即比较短的字符串。(这样可能不严谨。。。)
3、“非平凡前缀”:指除了最后一个字符以外,一个字符串的全部头部组合。
4、“非平凡后缀”:指除了第一个字符以外,一个字符串的全部尾部组合。(后面会有例子,均简称为前/后缀)
5、“部分匹配值”:前缀和后缀的最长共有元素的长度。
6、next[ ]是“部分匹配值表”,即next数组,它存储的是每一个下标对应的“部分匹配值”,是KMP算法的核心。(后面作详细讲解)。
核心思想:在每次失配时,不是把p串往后移一位,而是把p串往后移动至下一次可以和前面部分匹配的位置,这样就可以跳过大多数的失配步骤。而每次p串移动的步数就是通过查找next[ ]数组确定的。
next数组的含义及手动模拟
然后来说明一下next数组的含义:对next[ j ] ,是p[ 1, j ]串中前缀和后缀相同的最大长度(部分匹配值),即 p[ 1, next[ j ] ] = p[ j - next[ j ] + 1, j ]。
手动模拟求next数组:对 p = “abcab”
对next[ 1 ] :前缀 = 空集—————后缀 = 空集—————next[ 1 ] = 0;
对next[ 2 ] :前缀 = { a }—————后缀 = { b }—————next[ 2 ] = 0;
对next[ 3 ] :前缀 = { a , ab }—————后缀 = { c , bc}—————next[ 3 ] = 0;
对next[ 4 ] :前缀 = { a , ab , abc }—————后缀 = { a . ca , bca }—————next[ 4 ] = 1;
对next[ 5 ] :前缀 = { a , ab , abc , abca }————后缀 = { b , ab , cab , bcab}————next[ 5 ] = 2;
匹配思路和实现代码
KMP主要分两步:求next数组、匹配字符串。个人觉得匹配操作容易懂一些,所以先把匹配字符串讲一下。
s串 和 p串都是从1开始的。i 从1开始,j 从0开始,每次s[ i ] 和p[ j + 1 ]比较
当匹配过程到上图所示时,
s[ a , b ] = p[ 1, j ] && s[ i ] != p[ j + 1 ] 此时要移动p串(不是移动1格,而是直接移动到下次能匹配的位置)
其中1串为[ 1, next[ j ] ],3串为[ j - next[ j ] + 1 , j ]。由匹配可知 1串等于3串,3串等于2串。所以直接移动p串使1到3的位置即可。这个操作可由j = next[ j ]直接完成。 如此往复下去,当 j == m时匹配成功。
求next数组的思路和实现代码
next数组的求法是通过模板串自己与自己进行匹配操作得出来的
小结
这是我开始学算法以来(虽然也没几天。。。)遇见的第一个非常头疼的算法,纠结了一天,希望能对大家有所帮助,这里同样为大家准备了yxc大佬的KMP模板:
希望大家点赞关注,我会继续努力总结!#C++#
标签: #kmp算法的时间复杂度