前言:
现在看官们对“matconvnet中的relu层次”大体比较重视,我们都需要学习一些“matconvnet中的relu层次”的相关知识。那么小编在网摘上汇集了一些关于“matconvnet中的relu层次””的相关知识,希望兄弟们能喜欢,大家快快来了解一下吧!本文首发于极市平台,作者: @Happy,转载须经授权并注明来源
论文链接:
代码链接:
“文艺复兴”,ConvNet卷土重来,压过Transformer。本文是FAIR的Zhuang Liu(DenseNet的作者)与Saiming Xie(ResNeXt的作者)关于ConvNet的最新探索,以ResNet为出发点,逐步引入近来ViT架构的一些设计理念而得到的纯ConvNet新架构ConvNeXt,取得了优于SwinTransformer的性能,让ConvNet再次性能焕发。
Abstract
ViT伴随着视觉的“20年代”咆哮而来,迅速的碾压了ConvNet成为主流的研究方向。然而,当应用于广义CV任务(如目标检测、语义分割)时,常规的ViT面临着极大挑战。因此,分层Transformer(如Swin Transformer)重新引入了ConvNet先验信息,使得Transformer成实际可行的骨干网络并在不同视觉任务上取得了非凡的性能。然而,这种混合方法的有效性仍然很大程度上归根于Transformer的内在优越性,而非卷积固有归纳偏置。
本文对该设计空间进行了重新审视并测试了ConvNet所能达到的极限。我们将标准卷积朝ViT的设计方向进行逐步“现代化”调整,并发现了几种影响性能的关键成分。由于该探索是纯ConvNet架构,故将其称之为ConvNeXt。完成由标准ConvNet模块构建的ConvNeXt取得了优于Transformer的精度87.8%,在COCO检测与ADE20K分割任务上超越了SwinTransformer,同时保持了ConvNet的简单性与高效性。
Modernizing ConvNet:Roadmap
接下来,我们将提供从ResNet到ConvNeXt的演变轨迹。我们考虑了两种不同FLOPs尺寸的模型:ResNet50/Swin-T(FLOPs约)与ResNet200/Swin-B(FLOPs约),为简单起见,这里仅呈现ResNet50/Swin-T复杂度模型的结果。
我们以ResNet50作为出发点,首先采用类似ViT的训练技术对其重训练并得到ResNet50的改进结果(这将作为本文的基线);然后我们研究了一系列设计准则,总结如下:
Macro DesignResNeXtInverted BottleneckLarge Kernel SizeVarious Layer-wise Micro Design.
从上图可以看到网络架构每一次进化所能取得的性能(ConvNeXt-T取得了82%,超越了Swin-T的81.3%),由于模型复杂度与最终性能相关,故FLOPs进行了一定程度的控制。
Training Techniques
除了网络架构的设计外,训练方式也会影响最终的性能。ViT不仅带来了新的模块与架构设计,同时还引入了不同的训练技术,如AdamW优化。因此,探索的第一步就是采用ViT的训练机制训练基线模型ResNet-50/200。
本文采用了DeiT与SwinTransformer的训练方案,可参见上表。训练周期从原始的90epoch扩展到了300epoch;优化器为AdamW,数据增广包含Mixup、Cutmix、RandAugment、RandomErasing;正则化技术包含Stochastic Depth与Label Smoothing。增强的训练技术将ResNet50的性能从76.1%提升到了78.8%,这说明:Transformer与ConvNet的性能差距很大比例源自训练技术的升级。
Macro Design
我们现在开始对SwinTransformer的宏观架构设计,它参考ConvNet采用了多阶段设计思想,每个阶段具有不同的特征分辨率。它具有两个有意思的设计考量:(1) Stage Compute Ratio; (2)Stem Cell架构。
Changing Stage Compute Ratio. 原始ResNet的计算分布是经验性成果。“res4”的重计算设计是为了与下游任务(如目标检测)相兼容;而Swin-T参考了类似的设计准则但将计算比例微调为,更大的SwinTransformer的比例则为。参考该设计理念,我们将ResNet50每个阶段的块数从调整为。此时模型的性能从78.8%提升到79.4%。
Changing Stem to "Patchify". 一般来讲,Stem设计主要关心:在网络起始部分如何对图像进行处理。由于自然图像的信息冗余性,常见的Stem通过对输入图像下采样聚合到适当的特征尺寸。ResNet中的Stem包含stride等于2的卷积+MaxPool,它将输入图像进行4倍下采样;而ViT则采用了"Patchify"策略,它对应了大卷积核(如14、16)、非重叠卷积;SwinTransformer采用了类似的"Patchify",但块尺寸为4以兼容多阶段设计架构。我们将ResNet中的Stem替换为的"Patchify"层。此时,模型的性能从79.4%提升到了79.5%。
ResNeXt-ify
在这里,我们尝试采用了ResNeXt的设计理念(采用更多的组扩展宽度),其核心成分为组卷积。具体来说,ResNeXt在Bottleneck中为采用组卷积。这种设计方式可以大幅减少FLOPs,故通过提升网络宽度补偿容量损失。
在本文中,我们采用depthwise卷积,同时将网络的宽度进行了提升,此时它与Swin-T具有相同的通道数。此时,模型的性能提升到了80.5%,而FLOPs则提升到了53.G。
Inverted Bottleneck
Transformer模块的一个重要设计:它构建了Inverted Bottleneck,如MLP的隐层维度是输入维度的4倍。有意思的是:Transformer的这种设计与ConvNet中的Inverted Bottleneck(最早源自MobileNetV2)设计相一致。
在这里,我们探索了上图的几种不同设计,它将网络的FLOPs下降到了4.6G。有意思的是,这种设计将模型的性能从80.5%提升到了80.6%。对ResNet200的性能提升则更大,从81.9%提升到了82.6%。
Large Kernel Sizes
在这部分,我们聚焦于大卷积核的行为表现。ViT的最重要区分是其非局部自注意力,它使得每一层均具有全局感受野。尽管SwinTransformer采用了局部窗口机制,但其感受野仍至少为,远大于ConvNet的。因此,我们将ConvNet中使用大卷积核卷积进行回顾。
Moving up depthwise conv layer. 为探索大核,先决条件是depthwise卷积的位置上移(见Figure3c)。这种设计理念等同于Transformer中的MHSA先于MLP。此时,模型的性能临时下降到了79.9%,而FLOPs也下降到了4.1G。
Increasing the kernel size. 基于上述准备,我们采用了更大的卷积核,如。此时,模型的性能从79.9%!提升到了80.6%(),而模型的FLOPs几乎不变。
Micro Design
接下来,我们将从微观角度(即OP层面)探索几种架构差异,主要聚焦于激活函数与Normalization层的选择。
Replacing ReLU wit GELU. NLP与视觉架构的一个差异体现在激活函数的实用。ConvNet大多采用ReLU,而ViT大多采用GELU。我们发现:ConvNet中的ReLU可以替换为GELU,同时性能不变(80.6%)。
Fewer Activation Functions. Transformer与ResNet模块的一个小区别:Transformer模块使用了更少的激活函数。类似的,我们对ConvNeXt模块进行下图所示的改进,模型性能从80.6%提升到了81.3%(此时,它具有与Swin-T相当的性能)。
Fewer Normalization Layers Transformer通常具有更少的Normalization层,因此我们移除两个BN层仅保留卷积之前的一个BN。模型的性能提升到了81.4%,超越了Swin-T。
Substituting BN with LN 尽管BN是ConvNet的重要成分,具有加速收敛降低过拟合的作用;但BN对模型性能也存在有害影响。Transformer中的LN对不同的应用场景均具有比较好的性能。直接在原始ResNet中将BN替换为LN会导致性能下降,而组合了上述技术后再将BN替换为LN则能带来性能的提升:81.5%。
Separate Downsamling Layers 在ResNet中,每个阶段先采用stride=2的卷积进行下采样;而SwinTransformer则采用了分离式下采样层。我们探索了类似的策略:采用stride=2的卷积进行下采样,但这种方式导致了“不收敛”。进一步研究表明:在下采样处添加Normalization层有助于稳定训练。此时,模型的性能提升到了82.0%,大幅超越了Swin-T的81.3%。
Closing remarks. 到此为止,我们完成了ConvNet的进化之路,得到了超越SwinTransformer的纯ConvNet架构ConvNeXt。需要注意的是,上述设计并没有新颖之处,均得到了研究,但并未进行汇总集成。ConvNeXt具有与SwinTransformer相当的参数量、吞吐量、内存占用,更高的性能,且不需要依赖特定的模块(比如移位窗口注意力、相对位置偏置)。
Exmpirical Evaluations on ImageNet
基于前述ConvNeXt架构,我们构建了ConvNeXt-T/S/B/L以对标Swin-T/S/B/L。此外,我们还构建了一个更大的ConvNeXt-XL以进一步测试ConvNeXt的缩放性。不同变种模型的区别在于通道数、模块数,详细信息如下:
ConvNeXt-T: C=,B=ConvNeXt-S: C=,B=ConvNeXt-B: C=,B=ConvNeXt-L: C=,B=ConvNeXt-XL: C=,B=
上表给出了ImageNet上的性能对比,从中可以看到:
ConvNeXt具有比ConvNet(如RegNet、EfficientNet)更佳的精度-计算均衡以及吞吐量;ConvNeXt同样具有比SwinTransformer更佳的性能,且无需特殊操作模块;ConvNeXt@384比Swin-B性能高0.6%且推理速度快12.5%;仅需ImageNet训练,ConvNeXt-XL的性能即可达到85.5%;当采用ImageNet-22K预训练时,模型性能进一步提升到了87.8%。
既然ConvNeXt这么好,其设计理念能否应用到ViT中呢?结果见上表,从中可以看到:两者具有相当的性能,这意味着:ConvNeXt的设计理念用于非分层模块时仍具有竞争力。
Empirical Evalution on Downstream Tasks
为进一步验证ConvNeXt在下游任务的表现,我们基于Mask R-CNN与Cascade Mask R-CNN在COCO检测方面的性能,结果见上表,从中可以看到:ConvNeXt取得了与SwinTransformer相当,甚至更优的性能。当采用更大的骨干且ImageNet22K预训练时,ConvNeXt的性能更佳。
上表给出了ADE20K数据上的性能对比,从中可以看到:在不同容量大小下,ConvNeXt均可取得极具竞争力的结果,进一步验证了ConvNeXt的有效性。
上表还给出了Swin与ConvNeXt在吞吐量方面的对比,很明显:ConvNeXt具有比Swin更高的吞吐量、更高的精度。
标签: #matconvnet中的relu层次