前言:
目前朋友们对“tarjan算法无向图”大体比较关怀,同学们都想要学习一些“tarjan算法无向图”的相关内容。那么小编同时在网上搜集了一些对于“tarjan算法无向图””的相关资讯,希望你们能喜欢,朋友们一起来了解一下吧!初探tarjan算法(求强连通分量)
tarjan是一种求强连通分量、双连通分量的常用算法,其拓展例如求缩点、割点、割桥以及2-SAT等都是非常实用的(tarjan orz)
所以大概写这篇博客的目的就是简单介绍一下这个算法,至于2-SAT什么的……咳咳,你说什么?我没听见┓( ´∀` )┏
一、tarjan求强连通分量
1.什么是强连通分量?
引用来自度娘的一句话:
没准会一脸懵逼,不过仔细想想是可以理解的:
反正就是在图中找到一个最大的图,使这个图中每个两点都能够互相到达。这个最大的图称为强连通分量,同时一个点也属于强连通分量。
如图中强连通分量有三个:1-2-3,4,5
2.强连通分量怎么求?
噫……很明显,通过肉眼可以很直观地看出1-2-3是一组强连通分量,但很遗憾,机器并没有眼睛,所以该怎么判断强连通分量呢?
如果仍是上面那张图,我们对它进行dfs遍历。
可以注意到红边非常特别,因为如果按照遍历时间来分类的话,其他边都指向在自己之后被遍历到的点,而红边指向的则是比自己先被遍历到的点。
如果存在这么一条边,那么我们可以yy一下
从一个点出发,一直向下遍历,然后忽得找到一个点,那个点竟然有条指回这一个点的边!
那么想必这个点能够从自身出发再回到自身
想必这个点和其他向下遍历的该路径上的所有点构成了一个环,
想必这个环上的所有点都是强联通的。
但只是强联通啊,我们需要求的可是强连通分量啊……
比如说图中红色为强连通分量,而蓝色只是强联通图
因此我们只需要知道这个点u下面的所有子节点有没有连着这个点的祖先就行了。
但似乎还有一个问题啊……
我们怎么知道这个点u它下面的所有子节点一定是都与他强联通的呢?
这似乎是不对的,这个点u之下的所有点不一定都强联通
那么怎么在退回到这个点的时候,知道所有和这个点u构成强连通分量的点呢?
开个栈记录就行了
什么?!这么简单?
没错~就是这么简单~
如果在这个点之后被遍历到的点已经能与其下面的一部分点(也可能就只有他一个点)已经构成强连通分量,即它已经是最大的。
那么把它们一起从栈里弹出来就行了。
所以最后处理到点u时如果u的子孙没有指向其祖先的边,那么它之后的点肯定都已经处理好了,一个常见的思想,可以理解一下。
所以就可以保证栈里留下来u后的点都是能与它构成强连通分量的。
似乎做法已经明了了,用程序应该怎么实现呢?
3.tarjan求强连通分量的程序实现
首先需要介绍一些辅助数组
那么按照之上的思路,我们来考虑这几个数组的用处以及算法的具体过程。
假设现在开始遍历点u:
1、首先初始化dfn[u]=low[u]=第几个被dfs到
dfn可以理解,但为什么low也要这么做呢?
因为low的定义如上,也就是说如果没有子孙与u的祖先相连的话,dfn[u]一定是它和它的所有子孙中dfn最小的(因为它的所有子孙一定比他后搜到)。
2、将u存入stack[ ]中,并将vis[u]设为true
stack[ ]有什么用?
如果u在stack中,u之后的所有点在u被回溯到时u和栈中所有在它之后的点都构成强连通分量。(也就是上文中所说的开个栈记录)
3、遍历u的每一个能到的点,如果这个点dfn[ ]为0,即仍未访问过,那么就对点v进行dfs,然后low[u]=min{low[u],low[v]}
low[ ]有什么用?
应该能看出来吧,就是记录一个点它最大能连通到哪个祖先节点(当然包括自己)
如果遍历到的这个点已经被遍历到了,那么看它当前有没有在stack[ ]里,如果有那么low[u]=min{low[u],low[v]}
如果已经被弹掉了,说明无论如何这个点也不能与u构成强连通分量,因为它不能到达u
如果还在栈里,说明这个点肯定能到达u,同样u能到达他,他俩强联通。
4、假设我们已经dfs完了u的所有的子树,那么之后无论我们再怎么dfs,u点的low值已经不会再变了。
那么如果dfn[u]=low[u]这说明了什么呢?
再结合一下dfn和low的定义来看看吧
dfn表示u点被dfs到的时间,low表示u和u所有的子树所能到达的点中dfn最小的。
这说明了u点及u点之下的所有子节点没有边是指向u的祖先的了,即我们之前说的u点与它的子孙节点构成了一个最大的强连通图即强连通分量
此时我们得到了一个强连通分量,把所有的u点以后压入栈中的点和u点一并弹出,将它们的vis[ ]置为false,如有需要也可以给它们染上相同颜色(后面会用到)
于是tarjan求强连通分量的部分到此结束
代码大概长成这样
对了,tarjan一遍不能搜完所有的点,因为存在孤立点或者其他
所以我们要对一趟跑下来还没有被访问到的点继续跑tarjan
怎么知道这个点有没有被访问呢?
看看它的dfn是否为0!
好的,谢谢各位观看
等等,还没完呢QAQ,我们还没有证过复杂度啊
4.非常简短的tarjan复杂度证明
思考每个点最多被dfs一次,所以均摊下来复杂度是O(n)的
证毕
二、tarjan缩点
1.什么时候要用缩点
众所周知,有向无环图总是有着一些蜜汁优越性,因为没有环,你可以放心的在上面跑dfs,搞DP,但如果是一张有向有环图,事情就会变得尴尬起来了
思考一下会发现如果不打vis标记就会t飞(一直在环里绕啊绕),但是如果打了,又不一定能保证最优解
而你一看题目却发现显然根据一些贪心的原则,这个环上每个点的最大贡献都是整个环的总贡献
这个时候缩点就显得很有必要了,因为单个点的贡献和整个环相同,为什么不去把整个环缩成一个超级点呢?
这个环只是为了好理解,事实上他应该是一个强连通分量,显然如果只缩掉一个强连通图,图中仍然有环存在
缩点的一个栗子
----------->
2.怎么缩点
还记得之前tarjan里的染色吗?
我们只需要把同一颜色的点权加到一块,然后把该颜色指向不同颜色的边建好就可以了
代码就不贴了,因为不同的题有不同的处理方法
三、tarjan求割点
1.什么是割点
再次祭出度娘
是不是又一脸懵逼了?
总而言之,就是有个点维持着连通分量的继续,去掉那个点,这个连通分量就无法在维持下去,分成好几个连通分量。
下图为一个割点
2.割点怎么求
其实和之前强连通分量中的tarjan差不多了,如果这个点的dfn比low要小,说明他的子树中没有能够到达他祖先的点,他是这个双连通分量的一个割点,但要加一个特判,根节点如果有两个及以上的儿子,那么他也是割点。
于是代码也可以糊出来了
四、一些例(shui)题
大概就是一些模板题吧,而且为了页面整洁,只有思路,没有代码
1.洛谷P2863 牛的舞会 ()
用tarjan数出强连通分量的个数,给每个强连通分量的点染色,统计出每个强连通分量中点的个数,如果大于一,则答案加一
2.poj2186 Popular Cows()
显然一个强联通分量内的所有点都是满足条件的,我们可以对整张图进行缩点,然后就简单了。
剩下的所有点都不是强连通的,现在整张图就是一个DAG(有向无环图)
那么就变成一道水题了,因为这是一个有向无环图,不存在所有点的出度都不为零的情况。
所以必然有1个及以上的点出度为零,如果有两个点出度为零,那么这两个点肯定是不相连的,即这两圈牛不是互相崇拜的,于是此时答案为零,如果有1个点出度为0,那么这个点就是被全体牛崇拜的,
这个点可能是一个强联通分量缩成的超级点,所以应该输出整个强联通分量中点的个数。
3.洛谷P3387 模板 缩点 ()
显然把每个强连通分量缩成一个点,权值就是强连通分量中所有点值之和,接着就可以跑dfs了,加个记忆化搜索复杂度是O(n)的
4.洛谷P3388 模板 割点()
就是求割点的个数和位置
所以就讲到这里了~
本文发布于洛谷日报,特约作者:Styx
原文地址:
标签: #tarjan算法无向图