龙空技术网

我用Python给自己手机写了个人脸识别!拉开普通手机识别一万倍!

菜鸟带你学编程 177

前言:

此刻我们对“手机编程python”大约比较重视,你们都想要了解一些“手机编程python”的相关内容。那么小编在网摘上汇集了一些关于“手机编程python””的相关内容,希望小伙伴们能喜欢,大家一起来学习一下吧!

本文首先会介绍人脸识别模型的内部工作原理。随后结合一个简单的案例,我们将通过Python进行案例实践。在本文的最后部分,你将完成你的第一个人脸识别模型!

目录

理解人脸识别的工作原理案例学习Python应用理解Python代码人脸识别算法的应用

理解人脸识别的工作原理

为了理解人脸识别算法工作原理,我们首先来了解一下特征向量的概念。(译者注:此处的特征向量指机器学习的概念,不同于矩阵理论。)

每个机器学习算法都会将数据集作为输入,并从中学习经验。算法会遍历数据并识别数据中的模式。例如,假定我们希望识别指定图片中人物的脸,很多物体是可以看作模式的:

私信小编007 即可获取数十套PDF以及大量的学习资料哦!

脸的长度(cm)脸的宽度(cm)脸的平均肤色(R,G,B)唇部宽度(cm)鼻子长度(cm)

当给定一个图片时,我们可以标注不同的特征并将其转化为如下的特征向量:

如此一来,我们的图片现在被转化为一个向量,可以表示为(23.1,15.8,255,224,189,5.2,4.4)。当然我们还可以从图片中衍生出无数的其他特征(如,头发颜色,胡须,眼镜等)。然而在这个简单的例子中,我们只考虑这五个简单的特征。

现在,一旦我们将每个图片解码为特征向量,问题就变得更简单。明显地,当我们使用同一个人的两张面部图片时,提取的特征向量会非常相似。换言之,两个特征向量的“距离”就变得非常小。

此时机器学习可以帮我们完成两件事:

提取特征向量。由于特征过多,手动列出所有特征是非常困难的。一个机器学习算法可以自动标注很多特征。例如,一个复杂的特征可能是:鼻子长度和前额宽度的比例。手动列出所有的这些衍生特征是非常困难的。匹配算法:一旦得到特征向量,机器学习算法需要将新图片和语料库中的特征向量进行匹配。

既然我们对人脸识别如何工作有了基本的理解,让我们运用一些广泛使用的Python库来搭建自己的人脸识别算法。

案例学习

首先给定一些人物脸部的图片——可能是一些名人,如Mark Zuckerberg, Warren Buffett, Bill Gates, Shah Rukh Khan等,并把这些人脸看作我们的语料库。现在,我们给定一些其他名人的新图片(“新人物”),并判断这些“新人物”是否在语料库中。

以下是语料库中的图片:

如图所示,我们所列举的名人有Barack Obama, Bill Gates, Jeff Bezos, Mark Zuckerberg, Ray Dalio 和Shah Rukh Khan。

现在,假定“新人物”如下:

注:以上所有图片均来自Google图片。

显而易见,这是Shah Rukh Khan。然而对电脑来说,这个任务很有挑战性。因为对于我们来说,我们可以轻易地将图片的多种特征结合来判断这是哪个人物。然而对电脑而言,学习如何识别人脸是非常不直观的。

有一个神奇但是简单的python库封装了以上提及的内容——可以根据脸部特征生成特征向量并且知道如何区分不同的脸。这个python库叫做face_recognition。它应用了dlib——一个现代C++工具包,其中包含了一些机器学习算法来帮助完成复杂的基于C++的应用。

Python中的face_recognition库可以完成大量的任务:

发现给定图片中所有的脸。发现并处理图片中的脸部特征。识别图片中的脸。实时的人脸识别。

接下来,我们将探讨其中的第三种任务——识别图片中的脸。

你可以在github的如下链接中获取face_recognition库的源代码。

附链接:

事实上,这里有一些如何安装face_recognition库的指导。

附链接:

在你安装face_recognition之前,还需要安装dlib包。你可以从如下链接中找到安装dlib的指导。

附链接:

Python应用

这部分包括使用face_recognition库搭建简单人脸识别系统的代码。这是一个应用操作的部分,我们将在下一部分解读代码来理解更多细节。

# import the librariesimport osimport face_recognition# make a list of all the available imagesimages = os.listdir('images')# load your imageimage_to_be_matched = face_recognition.load_image_file('my_image.jpg')# encoded the loaded image into a feature vectorimage_to_be_matched_encoded = face_recognition.face_encodings( image_to_be_matched)[0]# iterate over each imagefor image in images: # load the image current_image = face_recognition.load_image_file("images/" + image) # encode the loaded image into a feature vector current_image_encoded = face_recognition.face_encodings(current_image)[0] # match your image with the image and check if it matches result = face_recognition.compare_faces( [image_to_be_matched_encoded], current_image_encoded) # check if it was a match if result[0] == True: print "Matched: " + image else: print "Not matched: " + image

文件结构如下:

facialrecognition:

fr.pymy_image.jpgimages/barack_obama.jpgbill_gates.jpgjeff_bezos.jpgmark_zuckerberg.jpgray_dalio.jpgshah_rukh_khan.jpgwarren_buffett.jpg

我们的根目录,facialrecognition包括:

fr.py的形式的人脸识别代码。my_image.jpg – 即将被识别的图片(“新人物”)。images/ –语料库。

如果你按照前文创建文件结构并执行代码,如下是你能得到的结果:

Matched: shah_rukh_khan.jpgNot matched: warren_buffett.jpgNot matched: barack_obama.jpgNot matched: ray_dalio.jpgNot matched: bill_gates.jpgNot matched: jeff_bezos.jpgNot matched: mark_zuckerberg.jpg

显而易见,新名人是Shah Rukh Khan 并且我们的人脸识别系统可以识别!

理解Python代码

现在让我们解读代码来,并理解其工作原理:

# import the librariesimport osimport face_recognition

以上是引入操作。我们将通过已经建好的os库来读入语料库中的所有图片,并且通过face_recognition来完成算法部分。

# make a list of all the available imagesimages = os.listdir('images')

这个简单的代码将帮助我们识别语料库中所有图片的路径。一旦执行这些代码,我们可以得到:

images = ['shah_rukh_khan.jpg', 'warren_buffett.jpg', 'barack_obama.jpg', 'ray_dalio.jpg', 'bill_gates.jpg', 'jeff_bezos.jpg', 'mark_zuckerberg.jpg']

现在,以下代码将加载新人物的图片:

# load your imageimage_to_be_matched = face_recognition.load_image_file('my_image.jpg')

为了保证算法可以解析图片,我们将人物脸部图片转化为特征向量:

# encoded the loaded image into a feature vectorimage_to_be_matched_encoded = face_recognition.face_encodings( image_to_be_matched)[0]

剩余的代码相对简单:

# iterate over each imagefor image in images: # load the image current_image = face_recognition.load_image_file("images/" + image) # encode the loaded image into a feature vector current_image_encoded = face_recognition.face_encodings(current_image)[0] # match your image with the image and check if it matches result = face_recognition.compare_faces( [image_to_be_matched_encoded], current_image_encoded) # check if it was a match if result[0] == True: print "Matched: " + image else: print "Not matched: " + image

此时,我们:

对每个图像进行循环操作。将图像解析为特征向量。比较语料库中已经加载的图片和被识别的新人物图片。如果两者匹配,我们就显示出来。如果不匹配,我们也要显示结果。

如上所示,结果显示这个简单的人脸识别算法进行得很顺利。让我们尝试将my_image替换为另一个图片:

当你再次运行这个算法,将会看到如下结果:

Not matched: shah_rukh_khan.jpgNot matched: warren_buffett.jpgNot matched: barack_obama.jpgNot matched: ray_dalio.jpgNot matched: bill_gates.jpgNot matched: jeff_bezos.jpgNot matched: mark_zuckerberg.jpg

很明显,系统没有将马云识别为以上的任何一个名人。这意味着我们的算法在以下方面都表现得很好:

正确地识别那些在语料库中存储的人。对语料库中不存在的人物进行标注。

人脸识别算法的应用

人脸识别是一个成熟的研究方向,已被广泛地应用在工业界和学术界。例如,一个罪犯在中国被捕可能就得益于人脸识别系统:系统识别了他的脸并发出警报。由此可见,面部识别可以用来减少犯罪。还有许多其他有趣的人脸识别案例:

面部身份验证:Apple在iPhones中引入了Face ID以用于面部身份验证。一些银行也尝试使用面部身份验证来解锁。用户服务:马来西亚的一些银行安装了新的人脸识别系统,用于识别有价值的银行客户,以便银行为其提供个人服务。进而银行可以通过维持这类用户并提升用户满意度来获取更多收益。保险行业:很多保险公司正在通过运用人脸识别系统来匹配人的脸和ID提供的照片,使赔付过程变得更简单。

尾记

综上所述,人脸识别是一个有趣的问题并且有很多强大的案例。这些应用可以有效地从各个方面为社会服务。尽管将这些技术商业化可能会带来伦理风险,但我们会把这个问题留到下次讨论。

标签: #手机编程python