龙空技术网

C# OpenCvSharp 直方图均衡化 图像去雾

opendotnet 245

前言:

此刻同学们对“opencv point坐标读取”可能比较重视,大家都想要剖析一些“opencv point坐标读取”的相关知识。那么小编在网摘上搜集了一些对于“opencv point坐标读取””的相关资讯,希望兄弟们能喜欢,兄弟们一起来学习一下吧!

效果

直方图

直方图均衡化

自适应的直方图均衡化

全局直方图均衡化

局部直方图均衡化

对比度调整

项目

代码

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using OpenCvSharp;

namespace OpenCvSharp_图像去雾

{

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

string imgPath = "";

private void button1_Click(object sender, EventArgs e)

{

OpenFileDialog ofd = new OpenFileDialog();

ofd.Filter = fileFilter;

if (ofd.ShowDialog() != DialogResult.OK) return;

pictureBox1.Image = ;

imgPath = ofd.FileName;

pictureBox1.Image = new Bitmap(imgPath);

}

/// <summary>

/// 直方图均衡化

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button2_Click(object sender, EventArgs e)

{

if (imgPath == "") return;

Mat mat = Cv2.ImRead(imgPath, ImreadModes.Grayscale);

Cv2.EqualizeHist(mat, mat);

pictureBox2.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);

}

/// <summary>

/// 自适应的直方图均衡化

/// 将整幅图像分成很多小块,然后再对每一个小块分别进行直方图均衡化,最后进行拼接

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button3_Click(object sender, EventArgs e)

{

if (imgPath == "") return;

Mat mat = Cv2.ImRead(imgPath, ImreadModes.Grayscale);

CLAHE clahe = Cv2.CreateCLAHE(10.0, new OpenCvSharp.Size(8, 8));

clahe.Apply(mat, mat);

pictureBox2.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);

}

/// <summary>

/// 全局直方图处理

/// 全局直方图处理通过对 RGB 图像的 R、G、B 三层通道分别进行直方图均衡化,再整合到新的图像的方式进行。

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button4_Click(object sender, EventArgs e)

{

if (imgPath == "") return;

Mat mat = Cv2.ImRead(imgPath);

Mat[] mats = Cv2.Split(mat);//拆分

//Mat mats0 = mats[0];//B

//Mat mats1 = mats[1];//G

//Mat mats2 = mats[2];//R

Cv2.EqualizeHist(mats[0], mats[0]);

Cv2.EqualizeHist(mats[1], mats[1]);

Cv2.EqualizeHist(mats[2], mats[2]);

Cv2.Merge(new Mat[] { mats[0], mats[1], mats[2] }, mat);

pictureBox2.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);

}

/// <summary>

/// 局部直方图处理

/// 即自适应直方图均衡化

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button5_Click(object sender, EventArgs e)

{

if (imgPath == "") return;

CLAHE clahe = Cv2.CreateCLAHE(6.0, new OpenCvSharp.Size(8, 8));

Mat mat = Cv2.ImRead(imgPath);

Mat[] mats = Cv2.Split(mat);//拆分

clahe.Apply(mats[0], mats[0]);//B

clahe.Apply(mats[1], mats[1]);//G

clahe.Apply(mats[2], mats[2]);//R

Cv2.Merge(new Mat[] { mats[0], mats[1], mats[2] }, mat);

pictureBox2.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);

}

/// <summary>

/// 直方图

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button6_Click(object sender, EventArgs e)

{

if (imgPath == "") return;

Mat lena = Cv2.ImRead(imgPath);

Mat[] mats = Cv2.Split(lena);//一张图片,将lena拆分成3个图片装进mat

Mat[] mats0 = new Mat[] { mats[0] };//B

Mat[] mats1 = new Mat[] { mats[1] };//G

Mat[] mats2 = new Mat[] { mats[2] };//R

Mat[] hist = new Mat[] { new Mat(), new Mat(), new Mat() };//一个矩阵数组,用来接收直方图,记得全部初始化

int[] channels = new int[] { 0 };//一个通道,初始化为通道0

int[] histsize = new int[] { 256 };//初始化为256箱子

Rangef[] range = new Rangef[1];//一个通道,范围

range[0] = new Rangef(0, 256);//从0开始(含),到256结束(不含)

Mat mask = new Mat();//不做掩码

Cv2.CalcHist(mats0, channels, mask, hist[0], 1, histsize, range);//对被拆分的图片单独进行计算

Cv2.CalcHist(mats1, channels, mask, hist[1], 1, histsize, range);//对被拆分的图片单独进行计算

Cv2.CalcHist(mats2, channels, mask, hist[2], 1, histsize, range);//对被拆分的图片单独进行计算

Cv2.Normalize(hist[0], hist[0], 0, 256, NormTypes.MinMax);// 归一化

Cv2.Normalize(hist[1], hist[1], 0, 256, NormTypes.MinMax);// 归一化

Cv2.Normalize(hist[2], hist[2], 0, 256, NormTypes.MinMax);// 归一化

double minVal0, maxVal0;

Cv2.MinMaxLoc(hist[0], out minVal0, out maxVal0);

double minVal1, maxVal1;

Cv2.MinMaxLoc(hist[1], out minVal1, out maxVal1);

double minVal2, maxVal2;

Cv2.MinMaxLoc(hist[2], out minVal2, out maxVal2);

double minVal = Math.Min(minVal0, Math.Min(minVal1, minVal2));

double maxVal = Math.Max(maxVal0, Math.Max(maxVal1, maxVal2));

int height = 512;

int width = 512;

hist[0] = hist[0] * (maxVal != 0 ? height / maxVal : 0.0);

hist[1] = hist[1] * (maxVal != 0 ? height / maxVal : 0.0);

hist[2] = hist[2] * (maxVal != 0 ? height / maxVal : 0.0);

Mat histImage = new Mat(height, width, MatType.CV_8UC3, new Scalar(100, 100, 100));

int binW = (int)((double)width / histsize[0]);

for (int i = 0; i < histsize[0]; i++)

{

histImage.Rectangle(

new OpenCvSharp.Point(i * binW, histImage.Rows - (int)hist[0].Get<float>(i)),

new OpenCvSharp.Point((i + 1) * binW, histImage.Rows),

new Scalar(255, 0, 0),

-1);

histImage.Rectangle(

new OpenCvSharp.Point(i * binW, histImage.Rows - (int)hist[1].Get<float>(i)),

new OpenCvSharp.Point((i + 1) * binW, histImage.Rows),

new Scalar(0, 255, 0),

-1);

histImage.Rectangle(

new OpenCvSharp.Point(i * binW, histImage.Rows - (int)hist[2].Get<float>(i)),

new OpenCvSharp.Point((i + 1) * binW, histImage.Rows),

new Scalar(0, 0, 255),

-1);

}

pictureBox2.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(histImage);

//Cv2.ImShow("hist", histImage);

}

/// <summary>

/// 画面对比度调整

/// 此处需要注意的是采用了YCrCB格式,该格式的Y通道是亮度,对其调整,实际上调整的是对比度,不会导致图片本身的失真。

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button7_Click(object sender, EventArgs e)

{

if (imgPath == "") return;

Mat lena = Cv2.ImRead(imgPath, ImreadModes.Color);

Mat yCbCR = new Mat();

Cv2.CvtColor(lena, yCbCR, ColorConversionCodes.BGR2YCrCb);

Mat[] channels = Cv2.Split(yCbCR);//一张图片,将lena拆分成3个图片装进mat

Cv2.EqualizeHist(channels[0], channels[0]);

Cv2.Merge(channels, yCbCR);

Mat result = new Mat();

Cv2.CvtColor(yCbCR, result, ColorConversionCodes.YCrCb2BGR);

pictureBox2.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(result);

//Cv2.ImShow("origin", lena);

//Cv2.ImShow("EqualizeHist", result);

}

}

}

标签: #opencv point坐标读取