前言:
如今看官们对“pandas 列类型”大概比较关怀,看官们都需要知道一些“pandas 列类型”的相关内容。那么小编也在网摘上汇集了一些对于“pandas 列类型””的相关资讯,希望姐妹们能喜欢,你们一起来了解一下吧!文章目录第3章 数组的存储和处理:numpy模块3.1.1 创建数组:array()函数3.1.2 创建等差数组:arange()函数3.1.3 创建随机数组:rand()、randn()、randint()函数3.2.1 查看行列数 :shape属性3.2.2 查看元素个数:size属性3.2.3 查看元素的数据类型:dtype属性3.2.4 转换元素的数据类型:astype()函数3.2.5 查看数组维度:ndim属性3.3.1 一维数组元素的选取3.3.2 二维数组的元素选取3.4.1 一维数组的重塑:reshape()函数3.4.2 多维数组的重塑:reshape()函数3.4.3 多维重塑为一维:flatten()、ravel()函数3.4.4 数组的转置:T属性、transpose()函数3.5.1 添加数组元素:append()、insert()函数3.5.2 删除数组元素:delete()函数3.5.3 处理数组的缺失值:isnan()函数3.5.4 处理数组的重复值:unique()函数3.5.5 拼接数组:concatenate()、hstack()、vstack()函数3.5.6 拆分数组:split()、hsplit()、vsplit()函数3.6.1 数组之间的四则运算3.6.2 数组元素的统计运算:sum()、mean()、max()函数4.2.1 读取Excel数据:read_excel()函数1. 读取特定工作簿:sheet_name参数2. 指定列标签:header参数3. 指定行标签:index_col参数4. 读取指定列:usecols参数4.2.2 读取csv文件数据:read_csv()函数4.3 查看数据的行数和列数4.3.1 查看数据的前几行:head()函数4.3.2 查看行数和列数:shape属性4.4.1 选择行数据:loc()、iloc()函数4.4.2 选择列数据:iloc()函数4.4.3 同时选择行列数据4.5 修改行、列标签:columns、index参数;set_index()函数第五章:pandas模块进阶5.1.1 查找数据:isin()函数5.1.2 替换数据:replace()函数5.2.1 插入数据:insert()函数5.2.2 删除元素:drop()函数1. 查看缺失值:isnull()函数2. 删除缺失值:dropna()函数3. 缺失值的填充:fillna()函数1. 删除重复行:drop_duplicates()函数2. 删除某一列的重复值:subset参数3. 获取唯一值:unique()函数1. sort_values()函数排序数据2. rank()函数获取数据的排名5.3.1 转置数据表的行列:T属性5.3.2 将数据表转换成树形结构:stack()函数5.4.1 数据的统计运算:sum()、mean()、max()5.4.2 获取数值分布情况:describe()5.4.3 计算相关系数:corr()5.4.4 分组汇总数据:groupby()5.4.5 创建数据透视表:pivot_table()5.4.4 分组汇总数据:groupby()5.4.5 创建数据透视表:pivot_table()第3章 数组的存储和处理:numpy模块3.1 创建数组3.1.1 创建数组:array()函数
一维数组情况:
import numpy as npa = np.array([1, 2, 3, 4])b = np.array(['产品编号', '销售数量', '销售单价', '销售金额'])print(a)print(b)
[1 2 3 4]['产品编号' '销售数量' '销售单价' '销售金额']
二维数组情况:
import numpy as npc = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])print (c)
[[1 2 3] [4 5 6] [7 8 9]]参数见下表
array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
参数
说明
object
必选,为一个序列型对象,如列表、元组、集合等,还可以是一个已创建好的数组
dtype
可选,用于指定数组元素的数据类型
copy
可选,用于设置是否需要复制对象
order
可选,用于指定创建数组的样式
subok
可选,默认返回一个与基类的类型一致的数组
ndmin
可选,用于指定生成数组的最小维度
3.1.2 创建等差数组:arange()函数索引从0开始,记左不记右
3参数情况:
import numpy as npd = np.arange(1,20,4) #第3个参数为步长 可选 默认为1 1~19,步长4 记左不记右print(d)
[ 1 5 9 13 17]
2参数情况:
import numpy as npd = np.arange(1,20)print(d)
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
1参数情况:
import numpy as npd = np.arange(20)print(d)
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]参数说明见表
arange(start, stop, step, dtype=None)
参数
说明
start
可选,表示起始值。省略时默认为0
stop
必选,表示结束值。生成的数组元素不包括该值
step
可选,表示步长。省略时默认为1。给出该参数则必须给出start参数
dtype
可选,表示数组元素类型。默认为None
3.1.3 创建随机数组:rand()、randn()、randint()函数1. rand()函数:生成元素值在[0,1)区间的随机数
一维情况:
import numpy as npe = np.random.rand(3)print(e)
[0.8412559 0.63220568 0.7395547 ]
二维情况:
import numpy as npe = np.random.rand(2, 3)print(e)
[[0.03654404 0.33348249 0.30089453] [0.35291365 0.56683093 0.41812811]]2. randn()函数:生成元素值在[0,1)区间的随机数,且符合标准正态分布
一维情况:
import numpy as npe = np.random.randn(3)print(e)
[ 0.36809175 -0.07224965 -0.33366574]
二维情况:
import numpy as npe = np.random.randn(3, 3)print(e)
[[ 1.14014499 -0.95577809 -0.94003745] [-2.61768236 -0.6565676 0.74041531] [-0.3138474 0.68276791 0.17315121]]3. randint()函数:生成指定范围的随机数,记左不记右
一维情况:
import numpy as npe = np.random.randint(1, 5, 10) #随机数范围:[1,5) 10个数print(e)
[4 1 2 4 1 3 2 4 1 2]
二维情况:第三个参数指定维度
import numpy as npe = np.random.randint(1, 10, (4, 2)) #随机数范围:[1,10)print(e)
[[4 4] [2 5] [3 3] [7 8]]3.2 查看数组的属性3.2.1 查看行列数 :shape属性
import numpy as nparr = np.array([[1, 2],[3, 4],[5, 6]])print(arr.shape)
(3, 2)
只查看行数、或者列数
import numpy as nparr = np.array([[1, 2],[3, 4],[5, 6]])print(arr.shape[0]) #查看行数print(arr.shape[1]) #查看列数3.2.2 查看元素个数:size属性
import numpy as nparr = np.array([[1, 2],[3, 4],[5, 6]])print(arr.size)3.2.3 查看元素的数据类型:dtype属性
import numpy as nparr = np.array([[1.3, 2, 3.6, 4], [5, 6, 7.8, 8]])print(arr.dtype)
float643.2.4 转换元素的数据类型:astype()函数
import numpy as nparr = np.array([[1.3, 2, 3.6, 4], [5, 6, 7.8, 8]])arr1 = arr.astype(int)print(arr1)print(arr1.dtype)
[[1 2 3 4] [5 6 7 8]]int323.2.5 查看数组维度:ndim属性
import numpy as nparr = np.array([[1, 2],[3, 4],[5, 6]])print(arr.ndim)3.3 选取数组元素3.3.1 一维数组元素的选取1. 选取单个元素
import numpy as nparr = np.array([12, 2, 40, 64, 56, 6, 57, 18, 95, 17, 21, 12])print(arr[0])print(arr[5])print(arr[-1]) #倒数第1个print(arr[-4])2. 选取连续的元素
import numpy as nparr = np.array([12, 2, 40, 64, 56, 6, 57, 18, 95, 17, 21, 12])print(arr[1:6])print(arr[3:-2])print(arr[:3])print(arr[:-3])print(arr[3:])print(arr[-3:])
[ 2 40 64 56 6][64 56 6 57 18 95 17][12 2 40][12 2 40 64 56 6 57 18 95][64 56 6 57 18 95 17 21 12][17 21 12]3. 选取不连续的元素
import numpy as nparr = np.array([12, 2, 40, 64, 56, 6, 57, 18, 95, 17, 21, 12])print(arr[1:5:2]) #[1,5) 步长为2 print(arr[5:1:-2]) #第三个参数指定步长print(arr[::3])print(arr[3::])print(arr[:3:])
[ 2 64][ 6 64][12 64 57 17][64 56 6 57 18 95 17 21 12][12 2 40]3.3.2 二维数组的元素选取
逗号隔开两个索引
1. 选取单个元素
import numpy as nparr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])print(arr[1, 2]) #第1行第2列 索引从0开始2. 选取单行或单列元素
import numpy as nparr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])print(arr[2])print(arr[:, 1])
[7 8 9][ 2 5 8 11]3. 选取某些行或某些列的元素
某些行
import numpy as nparr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])print(arr[1:3])print(arr[:2])print(arr[2:])
[[4 5 6] [7 8 9]][[1 2 3] [4 5 6]][[ 7 8 9] [10 11 12]]
某些列
import numpy as nparr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])print(arr[:, 1:3])print(arr[:, :2])print(arr[:, 2:])
[[ 2 3] [ 6 7] [10 11] [14 15]][[ 1 2] [ 5 6] [ 9 10] [13 14]][[ 3 4] [ 7 8] [11 12] [15 16]]4. 同时选取行列元素
import numpy as nparr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])print(arr[0:2, 1:3])
[[2 3] [6 7]]3.4 数组的重塑和转置3.4.1 一维数组的重塑:reshape()函数
import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7, 8])a = arr.reshape(2, 4) #需要重塑前后元素个数相等才行b = arr.reshape(4, 2)print(a)print(b)
[[1 2 3 4] [5 6 7 8]][[1 2] [3 4] [5 6] [7 8]]3.4.2 多维数组的重塑:reshape()函数
import numpy as nparr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])c = arr.reshape(4, 3)d = arr.reshape(2, 6)print(c)print(d)
[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]][[ 1 2 3 4 5 6] [ 7 8 9 10 11 12]]3.4.3 多维重塑为一维:flatten()、ravel()函数
import numpy as nparr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])print(arr.flatten()) #降为一维print(arr.ravel())
[ 1 2 3 4 5 6 7 8 9 10 11 12][ 1 2 3 4 5 6 7 8 9 10 11 12]3.4.4 数组的转置:T属性、transpose()函数1. T属性
import numpy as nparr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])print(arr)print(arr.T)
[[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]][[ 1 5 9] [ 2 6 10] [ 3 7 11] [ 4 8 12]]2. transpose()函数
import numpy as nparr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])arr1 = np.transpose(arr)print(arr1)
[[ 1 5 9] [ 2 6 10] [ 3 7 11] [ 4 8 12]]3.5 数组的处理3.5.1 添加数组元素:append()、insert()函数1. append()函数
import numpy as nparr = np.array([[1, 2, 3], [4, 5, 6]])arr1 = np.append(arr, [[7, 8, 9]])print(arr1)
[1 2 3 4 5 6 7 8 9]
可以看出append()函数在二维数组中添加元素,结果转为了一维数组。
那怎么保持二维数组呢?可以设置axis参数按行或者按列添加
axis=0:按行添加
import numpy as nparr = np.array([[1, 2, 3], [4, 5, 6]])arr1 = np.append(arr, [[7, 8, 9]], axis = 0)print(arr1)
[[1 2 3] [4 5 6] [7 8 9]]axis=1:按列添加
import numpy as nparr = np.array([[1, 2, 3], [4, 5, 6]])arr1 = np.append(arr, [[7, 8],[9, 10]], axis = 1)print(arr1)
[[ 1 2 3 7 8] [ 4 5 6 9 10]]append()函数参数如下
append(arr, values, axis=None)
参数
说明
arr
必选,要添加元素的数组
values
必选,要添加的数组元素
axis
可选,默认为None。省略此参数时,默认当一维数组尾插元素。为0按行添加;为1按列添加
2. insert()函数
import numpy as nparr = np.array([[1, 2], [3, 4], [5, 6]])arr1 = np.insert(arr, 1, [7, 8])print(arr1)
[1 7 8 2 3 4 5 6]
可以看出先把二维数组降成了一维数组,再在索引为1的位置添加元素。
那么怎么保持在二维添加元素呢? 同样设置axis参数
import numpy as nparr = np.array([[1, 2], [3, 4], [5, 6]])arr1 = np.insert(arr, 1, [7, 8], axis = 0)arr2 = np.insert(arr, 1, [7, 8, 9], axis = 1)print(arr1)print(arr2)
[[1 2] [7 8] [3 4] [5 6]][[1 7 2] [3 8 4] [5 9 6]]insert()参数如下
insert(arr, obj, values, axis)
参数
说明
arr
必选,要插入元素的数组
obj
必选,数组的索引值,表示插入元素的位置
values
必选,要插入的元素
axis
可选,省略此参数时,默认当一维数组插入。为0按行;为1按列
3.5.2 删除数组元素:delete()函数
也分按行和按列删除
import numpy as nparr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])arr1 = np.delete(arr, 2)arr2 = np.delete(arr, 2, axis = 0)arr3 = np.delete(arr, 2, axis = 1)print(arr1) print(arr2)print(arr3)
[1 2 4 5 6 7 8 9][[1 2 3] [4 5 6]][[1 2] [4 5] [7 8]]3.5.3 处理数组的缺失值:isnan()函数
标记缺失值: isnan()函数
import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, np.nan, 8, 9])print(arr)print(np.isnan(arr))
[ 1. 2. 3. 4. 5. 6. nan 8. 9.][False False False False False False True False False]
补充缺失值:
arr[np.isnan(arr)] = 0print(arr)
[1. 2. 3. 4. 5. 6. 0. 8. 9.]3.5.4 处理数组的重复值:unique()函数
import numpy as nparr = np.array([8, 4, 2, 3, 5, 2, 5, 5, 6, 8, 8, 9])arr1 = np.unique(arr)arr1, arr2 = np.unique(arr, return_counts=True) # 两个返回值 arr1为去重后数组 arr2为每个元素出现的次数print(arr1)print(arr2)
[2 3 4 5 6 8 9][2 1 1 3 1 3 1]3.5.5 拼接数组:concatenate()、hstack()、vstack()函数1. concatenate()函数
同样axis参数可以指定拼接按行还是按列
import numpy as nparr1 = np.array([[1, 2, 3], [4, 5, 6]])arr2 = np.array([[7, 8, 9], [10, 11, 12]])arr3 = np.concatenate((arr1, arr2), axis=0) #行方向上拼接arr4 = np.concatenate((arr1, arr2), axis=1) #列方向上拼接print(arr3)print(arr4)
[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]][[ 1 2 3 7 8 9] [ 4 5 6 10 11 12]]
2. hstack()函数:以水平堆叠的方式拼接数组
import numpy as nparr1 = np.array([[1, 2, 3], [4, 5, 6]])arr2 = np.array([[7, 8, 9], [10, 11, 12]])arr3 = np.hstack((arr1, arr2))print(arr3)
[[ 1 2 3 7 8 9] [ 4 5 6 10 11 12]]
3. vstack()函数:以垂直堆叠的方式拼接数组
import numpy as nparr1 = np.array([[1, 2, 3], [4, 5, 6]])arr2 = np.array([[7, 8, 9], [10, 11, 12]])arr3 = np.vstack((arr1, arr2))print(arr3)
[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]]3.5.6 拆分数组:split()、hsplit()、vsplit()函数1. split()函数
import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])arr1 = np.split(arr, 2) #第2个参数指定拆成几个数组arr2 = np.split(arr, 4)print(arr1)print(arr2)
[array([1, 2, 3, 4, 5, 6]), array([ 7, 8, 9, 10, 11, 12])][array([1, 2, 3]), array([4, 5, 6]), array([7, 8, 9]), array([10, 11, 12])]
第二个参数还可以是数组,指定拆分的位置
import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])arr3 = np.split(arr, [2, 6])arr4 = np.split(arr, [2, 3, 8, 10])print(arr3)print(arr4)
[array([1, 2]), array([3, 4, 5, 6]), array([ 7, 8, 9, 10, 11, 12])][array([1, 2]), array([3]), array([4, 5, 6, 7, 8]), array([ 9, 10]), array([11, 12])]2. hsplit()函数和vsplit()函数
hsplit()函数:横向拆成几个数组
vsplit()函数:纵向拆成几个数组
import numpy as nparr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9 , 10, 11, 12],[13, 14, 15, 16]])arr5 = np.hsplit(arr, 2)arr6 = np.vsplit(arr, 2)print(arr5)print(arr6)
[array([[ 1, 2], [ 5, 6], [ 9, 10], [13, 14]]), array([[ 3, 4], [ 7, 8], [11, 12], [15, 16]])][array([[1, 2, 3, 4], [5, 6, 7, 8]]), array([[ 9, 10, 11, 12], [13, 14, 15, 16]])]3.6 数组的运算3.6.1 数组之间的四则运算
数组与数组之间的运算
import numpy as nparr1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) arr2 = np.array([[9, 10, 11, 12], [13, 14, 15, 16]])arr3 = arr1 + arr2 #对应位置的元素相加arr4 = arr1 * arr2 #对应位置的元素相乘print(arr3)print(arr4)
[[10 12 14 16] [18 20 22 24]][[ 9 20 33 48] [ 65 84 105 128]]
数组与数值的运算
import numpy as nparr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])arr5 = arr + 5 #每个位置的元素+5arr6 = arr * 10 #每个位置的元素*10print(arr5)print(arr6)
[[ 6 7 8 9] [10 11 12 13]][[10 20 30 40] [50 60 70 80]]3.6.2 数组元素的统计运算:sum()、mean()、max()函数1. 求和:sum()函数
可以指定整个数组求和,还是按行或者按列
axis=0:每一列的元素求和
axis=1:每一行的元素求和
import numpy as nparr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])arr1 = arr.sum()arr2 = arr.sum(axis=0) #每一列的元素求和arr3 = arr.sum(axis=1) #每一行的元素求和print(arr1)print(arr2)print(arr3)
78[15 18 21 24][10 26 42]2. 求平均值:mean()函数
axis=0:每一列求均值
axis=1:每一行求均值
import numpy as nparr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])arr1 = arr.mean()arr2 = arr.mean(axis=0) #每一列求均值arr3 = arr.mean(axis=1) #每一行求均值print(arr1)print(arr2)print(arr3)
6.5[5. 6. 7. 8.][ 2.5 6.5 10.5]3. 求最值:max()函数
axis=0:每一列求最大值
axis=1:每一行求最大值
import numpy as nparr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])arr1 = arr.max()arr2 = arr.max(axis=0) #每一列求最大值arr3 = arr.max(axis=1) #每一行求最大值print(arr1)print(arr2)print(arr3)
12[ 9 10 11 12][ 4 8 12]第4章 pandas模块入门4.1 数据结构
pandas有两个重要的数据结构对象:Series和DataFrame。
4.1.1 Series对象
Series是创建一个一维数组对象,会自动生成行标签。
import pandas as pds = pd.Series(['短裤', '毛衣', '连衣裙', '牛仔裤'])print(s)
0 短裤1 毛衣2 连衣裙3 牛仔裤dtype: objectindex参数可以指定行标签
import pandas as pds1 = pd.Series(['短裤', '毛衣', '连衣裙', '牛仔裤'], index = ['a001', 'a002', 'a003', 'a004'])print(s1)
a001 短裤a002 毛衣a003 连衣裙a004 牛仔裤dtype: object使用Series对象还可以基于字典创建数据
import pandas as pds2 = pd.Series({ 'a001':'短裤', 'a002':'毛衣', 'a003':'连衣裙', 'a004':'牛仔裤'})print(s2)
a001 短裤a002 毛衣a003 连衣裙a004 牛仔裤dtype: object4.1.2 DataFrame对象
会自动生成行列标签
import pandas as pddf = pd.DataFrame([['短裤', 45], ['毛衣', 69], ['连衣裙', 119], ['牛仔裤', 99]])print(df)
0 10 短裤 451 毛衣 692 连衣裙 1193 牛仔裤 99可以columns参数指定列标签;index参数指定行标签
import pandas as pddf1 = pd.DataFrame([['短裤', 45], ['毛衣', 69], ['连衣裙', 119], ['牛仔裤', 99]], columns=['产品', '单价'], index=['a001', 'a002', 'a003', 'a004'])print(df1)
产品 单价a001 短裤 45a002 毛衣 69a003 连衣裙 119a004 牛仔裤 99
也可以用字典形式生成数据
import pandas as pddf3 = pd.DataFrame({ '产品':['短裤', '毛衣', '连衣裙', '牛仔裤'],'单价':[45, 69, 119, 99]})print(df3)
产品 单价0 短裤 451 毛衣 692 连衣裙 1193 牛仔裤 99
在用字典生成数据的基础上,同时指定行标签
import pandas as pddf3 = pd.DataFrame({ '产品':['短裤', '毛衣', '连衣裙', '牛仔裤'],'单价':[45, 69, 119, 99]}, index = ['a001', 'a002', 'a003', 'a004'])print(df3)
产品 单价a001 短裤 45a002 毛衣 69a003 连衣裙 119a004 牛仔裤 994.2 读取数据4.2.1 读取Excel数据:read_excel()函数1. 读取特定工作簿:sheet_name参数
例如对下表的数据进行读取
4月是第四个表,我们应把sheet_name参数指定为3;因为索引是从0开始的。
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)print(data)
订单编号 产品 数量 金额0 d001 投影仪 5台 20001 d002 马克笔 5盒 3002 d003 打印机 1台 2983 d004 点钞机 1台 3494 d005 复印纸 2箱 1005 d006 条码纸 6卷 34
可以看出read_excel()函数自动创建了一个DataFrame对象,同时自动把第一行数据当做列标签。
2. 指定列标签:header参数header参数可以指定列标签
可以看出不给出header参数时,该参数默认为0。
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, header=0)print(data)
订单编号 产品 数量 金额0 d001 投影仪 5台 20001 d002 马克笔 5盒 3002 d003 打印机 1台 2983 d004 点钞机 1台 3494 d005 复印纸 2箱 1005 d006 条码纸 6卷 34
header=1时结果如下:
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, header=1)print(data)
d001 投影仪 5台 20000 d002 马克笔 5盒 3001 d003 打印机 1台 2982 d004 点钞机 1台 3493 d005 复印纸 2箱 1004 d006 条码纸 6卷 34
header=None时结果如下:
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name = 3, header = None)print(data)
0 1 2 30 订单编号 产品 数量 金额1 d001 投影仪 5台 20002 d002 马克笔 5盒 3003 d003 打印机 1台 2984 d004 点钞机 1台 3495 d005 复印纸 2箱 1006 d006 条码纸 6卷 343. 指定行标签:index_col参数该参数默认为None
index_col=0时,第0列为列标签
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)print(data)
产品 数量 金额订单编号 d001 投影仪 5台 2000d002 马克笔 5盒 300d003 打印机 1台 298d004 点钞机 1台 349d005 复印纸 2箱 100d006 条码纸 6卷 34
index_col=0时
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=1)print(data)
订单编号 数量 金额产品 投影仪 d001 5台 2000马克笔 d002 5盒 300打印机 d003 1台 298点钞机 d004 1台 349复印纸 d005 2箱 100条码纸 d006 6卷 344. 读取指定列:usecols参数
usecols=[2]:指定第二列
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, usecols=[2])print(data)
数量0 5台1 5盒2 1台3 1台4 2箱5 6卷
指定多列
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, usecols=[1, 3])print(data)
产品 金额0 投影仪 20001 马克笔 3002 打印机 2983 点钞机 3494 复印纸 1005 条码纸 344.2.2 读取csv文件数据:read_csv()函数
数据如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-j1SHxY8y-1637655972909)(C:\Users\14051\AppData\Roaming\Typora\typora-user-images\image-20211114192949607.png)]
import pandas as pddata = pd.read_csv('订单表.csv')print(data)
订单编号 产品 数量 金额0 d001 投影仪 5台 20001 d002 马克笔 5盒 3002 d003 打印机 1台 2983 d004 点钞机 1台 3494 d005 复印纸 2箱 1005 d006 条码纸 6卷 34nrows参数可以指定显示的行数
nrows=3时
import pandas as pddata = pd.read_csv('订单表.csv', nrows=3)print(data)
订单编号 产品 数量 金额0 d001 投影仪 5台 20001 d002 马克笔 5盒 3002 d003 打印机 1台 2984.3 查看数据的行数和列数4.3.1 查看数据的前几行:head()函数
head()函数中参数为空默认前5行
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)print(data.head())
订单编号 产品 数量 金额0 d001 投影仪 5台 20001 d002 马克笔 5盒 3002 d003 打印机 1台 2983 d004 点钞机 1台 3494 d005 复印纸 2箱 100
指定head(3)时如下
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)print(data.head(3))
订单编号 产品 数量 金额0 d001 投影仪 5台 20001 d002 马克笔 5盒 3002 d003 打印机 1台 2984.3.2 查看行数和列数:shape属性
numpy模块也是shape
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)print(data)print(data.shape)
订单编号 产品 数量 金额0 d001 投影仪 5台 20001 d002 马克笔 5盒 3002 d003 打印机 1台 2983 d004 点钞机 1台 3494 d005 复印纸 2箱 1005 d006 条码纸 6卷 34(6, 4)4.3.3 查看数据的类型1. info()函数
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name = 3)print(data.info())
<class 'pandas.core.frame.DataFrame'>RangeIndex: 6 entries, 0 to 5Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 订单编号 6 non-null object 1 产品 6 non-null object 2 数量 6 non-null object 3 金额 6 non-null int64 dtypes: int64(1), object(3)memory usage: 320.0+ bytesNone2. dtype参数
查看特定列的书库类型
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name = 3)print(data['金额'].dtype)
int643. astype()函数
特定列数据类型转换
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name = 3)data['金额'] = data['金额'].astype('float64')print(data)print(data['金额'].dtype)
订单编号 产品 数量 金额0 d001 投影仪 5台 2000.01 d002 马克笔 5盒 300.02 d003 打印机 1台 298.03 d004 点钞机 1台 349.04 d005 复印纸 2箱 100.05 d006 条码纸 6卷 34.0float644.4 选择数据4.4.1 选择行数据:loc()、iloc()函数
先查看一下所有数据
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0) #index_col指定行标签print(data)
产品 数量 金额订单编号 d001 投影仪 5台 2000d002 马克笔 5盒 300d003 打印机 1台 298d004 点钞机 1台 349d005 复印纸 2箱 100d006 条码纸 6卷 341. 挑选单行数据loc()函数加行标签指定行
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)print(data.loc['d001'])
产品 投影仪数量 5台金额 2000Name: d001, dtype: objectiloc()函数加索引指定行号
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)print(data.iloc[2])
产品 打印机数量 1台金额 298Name: d003, dtype: object2. 挑选多行数据
与单行相比,结果显示的格式不一样了
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)print(data.loc[['d002', 'd004']])
产品 数量 金额订单编号 d002 马克笔 5盒 300d004 点钞机 1台 349
iloc()挑选:
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)print(data.iloc[[1, 5]])
产品 数量 金额订单编号 d002 马克笔 5盒 300d006 条码纸 6卷 34 产品 数量 金额
或者给出区间
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)print(data.iloc[1:5])
产品 数量 金额订单编号 d002 马克笔 5盒 300d003 打印机 1台 298d004 点钞机 1台 349d005 复印纸 2箱 1003. 挑选满足条件的行
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)a = data['金额'] < 300 #挑选金额>300的行print(data[a])
产品 数量 金额订单编号 d003 打印机 1台 298d005 复印纸 2箱 100d006 条码纸 6卷 344.4.2 选择列数据:iloc()函数1. 挑选单列数据
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)print(data['产品'])
0 投影仪1 马克笔2 打印机3 点钞机4 复印纸5 条码纸Name: 产品, dtype: object2. 挑选多列数据
挑选数据要么标签,要么索引挑选
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)print(data[['产品', '金额']])
产品 金额0 投影仪 20001 马克笔 3002 打印机 2983 点钞机 3494 复印纸 1005 条码纸 34
或者
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)print(data.iloc[:, [1,3]])
产品 金额0 投影仪 20001 马克笔 3002 打印机 2983 点钞机 3494 复印纸 1005 条码纸 34
或者写成区间
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)print(data.iloc[:, 1:3])
产品 数量0 投影仪 5台1 马克笔 5盒2 打印机 1台3 点钞机 1台4 复印纸 2箱5 条码纸 6卷4.4.3 同时选择行列数据
标签挑选
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)data1 = data.loc[['d001', 'd005'], ['产品', '金额']]print(data1)
产品 金额订单编号 d001 投影仪 2000d005 复印纸 100
或者索引挑选
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)data2 = data.iloc[[2, 4], [0, 2]]print(data2)
产品 金额订单编号 d003 打印机 298d005 复印纸 1004.5 修改行、列标签:columns、index参数;set_index()函数
先查看一下数据
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)print(data)
订单编号 产品 数量 金额0 d001 投影仪 5台 20001 d002 马克笔 5盒 3002 d003 打印机 1台 2983 d004 点钞机 1台 3494 d005 复印纸 2箱 1005 d006 条码纸 6卷 34set_index()设置行标签
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)print(data.set_index('订单编号'))
产品 数量 金额订单编号 d001 投影仪 5台 2000d002 马克笔 5盒 300d003 打印机 1台 298d004 点钞机 1台 349d005 复印纸 2箱 100d006 条码纸 6卷 34
或者用字典一对一修改
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)data = data.rename(columns={ '订单编号':'编号', '产品':'产品名称', '数量':'订单数量', '金额':'订单金额'}, index = { 0:'A', 1:'B', 2:'C', 3:'D', 4:'E', 5:'F'})print(data)
编号 产品名称 订单数量 订单金额A d001 投影仪 5台 2000B d002 马克笔 5盒 300C d003 打印机 1台 298D d004 点钞机 1台 349E d005 复印纸 2箱 100F d006 条码纸 6卷 34columns、index参数分别修改列、行标签
import pandas as pddata = pd.read_excel('订单表.xlsx', sheet_name=3)data.columns = ['编号', '产品名称', '订单数量', '订单金额']data.index = ['A', 'B', 'C', 'D', 'E', 'F']print(data)
编号 产品名称 订单数量 订单金额A d001 投影仪 5台 2000B d002 马克笔 5盒 300C d003 打印机 1台 298D d004 点钞机 1台 349E d005 复印纸 2箱 100F d006 条码纸 6卷 34第五章:pandas模块进阶5.1 数据的查找和替换5.1.1 查找数据:isin()函数
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a6QKIoie-1637655972912)(C:\Users\14051\AppData\Roaming\Typora\typora-user-images\image-20211123110431201.png)]
import pandas as pddata = pd.read_excel('产品统计表.xlsx')print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 16 65 60 960 3900 29401 a002 钱包 90 187 50 4500 9350 48502 a003 背包 16 65 23 368 1495 11273 a004 手提包 36 147 26 936 3822 28864 a005 钱包 90 187 78 7020 14586 75665 a006 单肩包 58 124 63 3654 7812 41586 a007 单肩包 58 124 58 3364 7192 3828
isin()函数查看表中是否有该值
data1 = data.isin(['a005','钱包'])print(data1)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 False False False False False False False False1 False True False False False False False False2 False False False False False False False False3 False False False False False False False False4 True True False False False False False False5 False False False False False False False False6 False False False False False False False False
查看特定列是否有该值
data2 = data['产品'].isin(['手提包'])print(data2)
0 False1 False2 False3 True4 False5 False6 FalseName: 产品, dtype: bool5.1.2 替换数据:replace()函数
import pandas as pddata = pd.read_excel('产品统计表.xlsx')data.replace('背包', '挎包') #并没有替换print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 16 65 60 960 3900 29401 a002 钱包 90 187 50 4500 9350 48502 a003 背包 16 65 23 368 1495 11273 a004 手提包 36 147 26 936 3822 28864 a005 钱包 90 187 78 7020 14586 75665 a006 单肩包 58 124 63 3654 7812 41586 a007 单肩包 58 124 58 3364 7192 3828
可以看出上述代码并没有替换,那怎么替换呢?
1. 一对一替换
import pandas as pddata = pd.read_excel('产品统计表.xlsx')data.replace('背包', '挎包', inplace = True)print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 挎包 16 65 60 960 3900 29401 a002 钱包 90 187 50 4500 9350 48502 a003 挎包 16 65 23 368 1495 11273 a004 手提包 36 147 26 936 3822 28864 a005 钱包 90 187 78 7020 14586 75665 a006 单肩包 58 124 63 3654 7812 41586 a007 单肩包 58 124 58 3364 7192 38282. 多对一替换
import pandas as pddata = pd.read_excel('产品统计表.xlsx')data.replace(['背包', '手提包'], '挎包', inplace = True)print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 挎包 16 65 60 960 3900 29401 a002 钱包 90 187 50 4500 9350 48502 a003 挎包 16 65 23 368 1495 11273 a004 挎包 36 147 26 936 3822 28864 a005 钱包 90 187 78 7020 14586 75665 a006 单肩包 58 124 63 3654 7812 41586 a007 单肩包 58 124 58 3364 7192 38283. 多对多替换
import pandas as pddata = pd.read_excel('产品统计表.xlsx')data.replace({ '背包':'挎包', 16:39, 65:88}, inplace = True)print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 挎包 39 88 60 960 3900 29401 a002 钱包 90 187 50 4500 9350 48502 a003 挎包 39 88 23 368 1495 11273 a004 手提包 36 147 26 936 3822 28864 a005 钱包 90 187 78 7020 14586 75665 a006 单肩包 58 124 63 3654 7812 41586 a007 单肩包 58 124 58 3364 7192 38285.2 数据的处理5.2.1 插入数据:insert()函数
末尾插入一列
import pandas as pddata = pd.read_excel('产品统计表.xlsx')data['品牌'] = ['AM', 'DE', 'SR', 'AM', 'TY', 'DE', 'UD']print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元) 品牌0 a001 背包 16 65 60 960 3900 2940 AM1 a002 钱包 90 187 50 4500 9350 4850 DE2 a003 背包 16 65 23 368 1495 1127 SR3 a004 手提包 36 147 26 936 3822 2886 AM4 a005 钱包 90 187 78 7020 14586 7566 TY5 a006 单肩包 58 124 63 3654 7812 4158 DE6 a007 单肩包 58 124 58 3364 7192 3828 UD
指定插入到哪列
import pandas as pddata = pd.read_excel('产品统计表.xlsx')data.insert(2, '品牌', ['AM', 'DE', 'SR', 'AM', 'TY', 'DE', 'UD'])print(data)
编号 产品 品牌 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 AM 16 65 60 960 3900 29401 a002 钱包 DE 90 187 50 4500 9350 48502 a003 背包 SR 16 65 23 368 1495 11273 a004 手提包 AM 36 147 26 936 3822 28864 a005 钱包 TY 90 187 78 7020 14586 75665 a006 单肩包 DE 58 124 63 3654 7812 41586 a007 单肩包 UD 58 124 58 3364 7192 38285.2.2 删除元素:drop()函数
axis参数可以指定删除行还是删除列
1. 删除列
指定标签删除
import pandas as pddata = pd.read_excel('产品统计表.xlsx')a = data.drop(['成本价(元/个)', '成本(元)'], axis = 1)print(a)
编号 产品 销售价(元/个) 数量(个) 收入(元) 利润(元)0 a001 背包 65 60 3900 29401 a002 钱包 187 50 9350 48502 a003 背包 65 23 1495 11273 a004 手提包 147 26 3822 28864 a005 钱包 187 78 14586 75665 a006 单肩包 124 63 7812 41586 a007 单肩包 124 58 7192 3828
指定索引删除
import pandas as pddata = pd.read_excel('产品统计表.xlsx')b = data.drop(data.columns[[2, 5]], axis = 1)print(b)
编号 产品 销售价(元/个) 数量(个) 收入(元) 利润(元)0 a001 背包 65 60 3900 29401 a002 钱包 187 50 9350 48502 a003 背包 65 23 1495 11273 a004 手提包 147 26 3822 28864 a005 钱包 187 78 14586 75665 a006 单肩包 124 63 7812 41586 a007 单肩包 124 58 7192 3828
方法三
import pandas as pddata = pd.read_excel('产品统计表.xlsx')c = data.drop(columns = ['成本价(元/个)', '成本(元)'])print(c)
编号 产品 销售价(元/个) 数量(个) 收入(元) 利润(元)0 a001 背包 65 60 3900 29401 a002 钱包 187 50 9350 48502 a003 背包 65 23 1495 11273 a004 手提包 147 26 3822 28864 a005 钱包 187 78 14586 75665 a006 单肩包 124 63 7812 41586 a007 单肩包 124 58 7192 38282. 删除行
指定行标签删除
import pandas as pddata = pd.read_excel('产品统计表.xlsx', index_col = 0)a = data.drop(['a001', 'a004'], axis = 0)print(a)
产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)编号 a002 钱包 90 187 50 4500 9350 4850a003 背包 16 65 23 368 1495 1127a005 钱包 90 187 78 7020 14586 7566a006 单肩包 58 124 63 3654 7812 4158a007 单肩包 58 124 58 3364 7192 3828
指定索引删除
import pandas as pddata = pd.read_excel('产品统计表.xlsx', index_col = 0)b = data.drop(data.index[[0, 4]], axis = 0)print(b)
产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)编号 a002 钱包 90 187 50 4500 9350 4850a003 背包 16 65 23 368 1495 1127a004 手提包 36 147 26 936 3822 2886a006 单肩包 58 124 63 3654 7812 4158a007 单肩包 58 124 58 3364 7192 3828
方法三:
import pandas as pddata = pd.read_excel('产品统计表.xlsx', index_col = 0)c = data.drop(index = ['a001', 'a004'])print(c)
产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)编号 a002 钱包 90 187 50 4500 9350 4850a003 背包 16 65 23 368 1495 1127a005 钱包 90 187 78 7020 14586 7566a006 单肩包 58 124 63 3654 7812 4158a007 单肩包 58 124 58 3364 7192 38285.2.3 处理缺失值1. 查看缺失值:isnull()函数
先查看所有数据
import pandas as pddata = pd.read_excel('产品统计表1.xlsx')print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 16.0 65 60 960.0 3900 29401 a002 钱包 90.0 187 50 4500.0 9350 48502 a003 背包 NaN 65 23 368.0 1495 11273 a004 手提包 36.0 147 26 936.0 3822 28864 a005 钱包 90.0 187 78 7020.0 14586 75665 a006 单肩包 58.0 124 63 3654.0 7812 41586 a007 单肩包 58.0 124 58 NaN 7192 3828
info()函数查看数据类型,还可以查看是否有缺失值
import pandas as pddata = pd.read_excel('产品统计表1.xlsx')data.info()
<class 'pandas.core.frame.DataFrame'>RangeIndex: 7 entries, 0 to 6Data columns (total 8 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 编号 7 non-null object 1 产品 7 non-null object 2 成本价(元/个) 6 non-null float64 3 销售价(元/个) 7 non-null int64 4 数量(个) 7 non-null int64 5 成本(元) 6 non-null float64 6 收入(元) 7 non-null int64 7 利润(元) 7 non-null int64 dtypes: float64(2), int64(4), object(2)memory usage: 576.0+ bytes
isnull()函数查看是否有缺失值
在numpy模块中用isnan()函数
import pandas as pddata = pd.read_excel('产品统计表1.xlsx')a = data.isnull()print(a)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 False False False False False False False False1 False False False False False False False False2 False False True False False False False False3 False False False False False False False False4 False False False False False False False False5 False False False False False False False False6 False False False False False True False False2. 删除缺失值:dropna()函数
删除有缺失值的行
import pandas as pddata = pd.read_excel('产品统计表1.xlsx')b = data.dropna()print(b)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 16.0 65 60 960.0 3900 29401 a002 钱包 90.0 187 50 4500.0 9350 48503 a004 手提包 36.0 147 26 936.0 3822 28864 a005 钱包 90.0 187 78 7020.0 14586 75665 a006 单肩包 58.0 124 63 3654.0 7812 4158
删除整行都为缺失值的行: 需要指定how参数
import pandas as pddata = pd.read_excel('产品统计表1.xlsx')c = data.dropna(how = 'all')print(c)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 16.0 65 60 960.0 3900 29401 a002 钱包 90.0 187 50 4500.0 9350 48502 a003 背包 NaN 65 23 368.0 1495 11273 a004 手提包 36.0 147 26 936.0 3822 28864 a005 钱包 90.0 187 78 7020.0 14586 75665 a006 单肩包 58.0 124 63 3654.0 7812 41586 a007 单肩包 58.0 124 58 NaN 7192 38283. 缺失值的填充:fillna()函数
import pandas as pddata = pd.read_excel('产品统计表1.xlsx')d = data.fillna(0) # 缺失值全部填充为0print(d)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 16.0 65 60 960.0 3900 29401 a002 钱包 90.0 187 50 4500.0 9350 48502 a003 背包 0.0 65 23 368.0 1495 11273 a004 手提包 36.0 147 26 936.0 3822 28864 a005 钱包 90.0 187 78 7020.0 14586 75665 a006 单肩包 58.0 124 63 3654.0 7812 41586 a007 单肩包 58.0 124 58 0.0 7192 3828
不同列的缺失值设置不同的填充值
import pandas as pddata = pd.read_excel('产品统计表1.xlsx')e = data.fillna({ '成本价(元/个)':16, '成本(元)':3364})print(e)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 16.0 65 60 960.0 3900 29401 a002 钱包 90.0 187 50 4500.0 9350 48502 a003 背包 16.0 65 23 368.0 1495 11273 a004 手提包 36.0 147 26 936.0 3822 28864 a005 钱包 90.0 187 78 7020.0 14586 75665 a006 单肩包 58.0 124 63 3654.0 7812 41586 a007 单肩包 58.0 124 58 3364.0 7192 38285.2.4 处理重复值
import pandas as pddata = pd.read_excel('产品统计表2.xlsx')print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 16 65 60 960 3900 29401 a002 钱包 90 187 50 4500 9350 48502 a003 背包 16 65 23 368 1495 11273 a004 手提包 36 147 26 936 3822 28864 a004 手提包 36 147 26 936 3822 2886 # 重复5 a005 钱包 90 187 78 7020 14586 75666 a006 单肩包 58 124 63 3654 7812 41581. 删除重复行:drop_duplicates()函数
a = data.drop_duplicates()print(a)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 16 65 60 960 3900 29401 a002 钱包 90 187 50 4500 9350 48502 a003 背包 16 65 23 368 1495 11273 a004 手提包 36 147 26 936 3822 28865 a005 钱包 90 187 78 7020 14586 75666 a006 单肩包 58 124 63 3654 7812 41582. 删除某一列的重复值:subset参数
默认保留第一个重复值所在的行,删除其他重复值所在的行
b = data.drop_duplicates(subset = '产品')print(b)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 16 65 60 960 3900 29401 a002 钱包 90 187 50 4500 9350 48503 a004 手提包 36 147 26 936 3822 28866 a006 单肩包 58 124 63 3654 7812 4158
保留第一个重复值所在的行
c = data.drop_duplicates(subset = '产品', keep = 'first')print(c)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)0 a001 背包 16 65 60 960 3900 29401 a002 钱包 90 187 50 4500 9350 48503 a004 手提包 36 147 26 936 3822 28866 a006 单肩包 58 124 63 3654 7812 4158
保留最后一个重复值所在的行
d = data.drop_duplicates(subset = '产品', keep = 'last')print(d)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)2 a003 背包 16 65 23 368 1495 11274 a004 手提包 36 147 26 936 3822 28865 a005 钱包 90 187 78 7020 14586 75666 a006 单肩包 58 124 63 3654 7812 4158
是重复的就删除
e = data.drop_duplicates(subset = '产品', keep = False)print(e)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)6 a006 单肩包 58 124 63 3654 7812 41583. 获取唯一值:unique()函数
f = data['产品'].unique()print(f)
['背包' '钱包' '手提包' '单肩包']5.2.5 排序数据1. sort_values()函数排序数据
import pandas as pddata = pd.read_excel('产品统计表2.xlsx')a = data.sort_values(by = '数量(个)', ascending = True) #第一个参数指定列 第二个参数指定升序print(a)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)2 a003 背包 16 65 23 368 1495 11273 a004 手提包 36 147 26 936 3822 28864 a004 手提包 36 147 26 936 3822 28861 a002 钱包 90 187 50 4500 9350 48500 a001 背包 16 65 60 960 3900 29406 a006 单肩包 58 124 63 3654 7812 41585 a005 钱包 90 187 78 7020 14586 7566
降序如下
b = data.sort_values(by = '数量(个)', ascending = False)print(b)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)5 a005 钱包 90 187 78 7020 14586 75666 a006 单肩包 58 124 63 3654 7812 41580 a001 背包 16 65 60 960 3900 29401 a002 钱包 90 187 50 4500 9350 48503 a004 手提包 36 147 26 936 3822 28864 a004 手提包 36 147 26 936 3822 28862 a003 背包 16 65 23 368 1495 11272. rank()函数获取数据的排名
c = data['利润(元)'].rank(method = 'average', ascending = False) #指定利润降序排序 有重复值则返回重复值的平均排名print(c)
0 4.01 2.02 7.03 5.54 5.55 1.06 3.0Name: 利润(元), dtype: float64
参数指定first时,表示在数据有重复值时,越先出现的数据排名越靠前
d = data['利润(元)'].rank(method = 'first', ascending = False)print(d)
0 4.01 2.02 7.03 5.04 6.05 1.06 3.0Name: 利润(元), dtype: float645.2.6 筛选数据
获取产品为单肩包的行数据
import pandas as pddata = pd.read_excel('产品统计表.xlsx')a = data[data['产品'] == '单肩包'] #获取产品为单肩包的行数据print(a)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)5 a006 单肩包 58 124 63 3654 7812 41586 a007 单肩包 58 124 58 3364 7192 3828
获取数量>60的行数据
b = data[data['数量(个)'] > 60] # 获取数量>60的行数据print(b)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)4 a005 钱包 90 187 78 7020 14586 75665 a006 单肩包 58 124 63 3654 7812 4158
获取产品为单肩包 且 数量>60 的行数据
c = data[(data['产品'] == '单肩包') & (data['数量(个)'] > 60)]print(c)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)5 a006 单肩包 58 124 63 3654 7812 4158
获取产品为单肩包 或 数量>60 的行数据
d = data[(data['产品'] == '单肩包') | (data['数量(个)'] > 60)]print(d)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)4 a005 钱包 90 187 78 7020 14586 75665 a006 单肩包 58 124 63 3654 7812 41586 a007 单肩包 58 124 58 3364 7192 38285.3 数据表的处理5.3.1 转置数据表的行列:T属性
import pandas as pddata = pd.read_excel('产品统计表.xlsx')a = data.Tprint(a)
0 1 2 3 4 5 6编号 a001 a002 a003 a004 a005 a006 a007产品 背包 钱包 背包 手提包 钱包 单肩包 单肩包成本价(元/个) 16 90 16 36 90 58 58销售价(元/个) 65 187 65 147 187 124 124数量(个) 60 50 23 26 78 63 58成本(元) 960 4500 368 936 7020 3654 3364收入(元) 3900 9350 1495 3822 14586 7812 7192利润(元) 2940 4850 1127 2886 7566 4158 38285.3.2 将数据表转换成树形结构:stack()函数
import pandas as pddata = pd.read_excel('产品统计表3.xlsx')print(data)
编号 产品 销售价(元/个) 数量(个) 收入(元)0 a001 背包 65 60 39001 a002 钱包 187 50 93502 a003 单肩包 124 58 7192
stack()函数转换成树形结构
a = data.stack()print(a)
0 编号 a001 产品 背包 销售价(元/个) 65 数量(个) 60 收入(元) 39001 编号 a002 产品 钱包 销售价(元/个) 187 数量(个) 50 收入(元) 93502 编号 a003 产品 单肩包 销售价(元/个) 124 数量(个) 58 收入(元) 7192dtype: object5.3.3 数据表的拼接
import pandas as pddata1 = pd.read_excel('产品表.xlsx', sheet_name = 0) #第0张工作簿data2 = pd.read_excel('产品表.xlsx',sheet_name = 1) #第1张工作簿print(data1)print(data2)
员工编号 员工姓名 员工性别0 a001 张三 男1 a002 李四 女2 a003 王五 男3 a004 赵六 男 员工编号 员工姓名 销售业绩0 a001 张三 3600001 a002 李四 4580002 a003 王五 3690003 a004 赵六 4500004 a005 钱七 5000001. merge()函数
a = pd.merge(data1, data2) #行取交集 列取并集print(a)
员工编号 员工姓名 员工性别 销售业绩0 a001 张三 男 3600001 a002 李四 女 4580002 a003 王五 男 3690003 a004 赵六 男 450000
how参数指定外连接
b = pd.merge(data1, data2, how = 'outer') #行取并集 列取并集print(b)
员工编号 员工姓名 员工性别 销售业绩0 a001 张三 男 3600001 a002 李四 女 4580002 a003 王五 男 3690003 a004 赵六 男 4500004 a005 钱七 NaN 500000
on参数指定按哪一列合并
c = pd.merge(data1, data2, on = '员工姓名')print(c)
员工编号_x 员工姓名 员工性别 员工编号_y 销售业绩0 a001 张三 男 a001 3600001 a002 李四 女 a002 4580002 a003 王五 男 a003 3690003 a004 赵六 男 a004 4500002. concat()函数
concat()函数采用 全连接 的方式,没有的数设置为缺失值
d = pd.concat([data1, data2])print(d)
员工编号 员工姓名 员工性别 销售业绩0 a001 张三 男 NaN1 a002 李四 女 NaN2 a003 王五 男 NaN3 a004 赵六 男 NaN0 a001 张三 NaN 360000.01 a002 李四 NaN 458000.02 a003 王五 NaN 369000.03 a004 赵六 NaN 450000.04 a005 钱七 NaN 500000.0
重置行标签
e = pd.concat([data1, data2], ignore_index = True) #重置行标签print(e)
员工编号 员工姓名 员工性别 销售业绩0 a001 张三 男 NaN1 a002 李四 女 NaN2 a003 王五 男 NaN3 a004 赵六 男 NaN4 a001 张三 NaN 360000.05 a002 李四 NaN 458000.06 a003 王五 NaN 369000.07 a004 赵六 NaN 450000.08 a005 钱七 NaN 500000.03. append()函数
效果与concat()一样
f = data1.append(data2)print(f)
员工编号 员工姓名 员工性别 销售业绩0 a001 张三 男 NaN1 a002 李四 女 NaN2 a003 王五 男 NaN3 a004 赵六 男 NaN0 a001 张三 NaN 360000.01 a002 李四 NaN 458000.02 a003 王五 NaN 369000.03 a004 赵六 NaN 450000.04 a005 钱七 NaN 500000.0
末尾添加行元素
g = data1.append({ '员工编号':'a005', '员工姓名':'孙七', '员工性别':'男'}, ignore_index = True)print(g)
员工编号 员工姓名 员工性别0 a001 张三 男1 a002 李四 女2 a003 王五 男3 a004 赵六 男4 a005 孙七 男5.4 数据的运算5.4.1 数据的统计运算:sum()、mean()、max()1. 求和:sum()
import pandas as pddata = pd.read_excel('产品统计表.xlsx')a = data.sum()print(a)
编号 a001a002a003a004a005a006a007产品 背包钱包背包手提包钱包单肩包单肩包成本价(元/个) 364销售价(元/个) 899数量(个) 358成本(元) 20802收入(元) 48157利润(元) 27355dtype: object
指定列求和
b = data['利润(元)'].sum()print(b)2. 求平均值:mean()
c = data.mean()print(c)
成本价(元/个) 52.000000销售价(元/个) 128.428571数量(个) 51.142857成本(元) 2971.714286收入(元) 6879.571429利润(元) 3907.857143dtype: float64
指定列求均值
d = data['利润(元)'].mean()print(d)
3907.85714285714273. 求最值:max()
e = data.max()print(e)
编号 a007产品 钱包成本价(元/个) 90销售价(元/个) 187数量(个) 78成本(元) 7020收入(元) 14586利润(元) 7566dtype: object
指定列求最值
f = data['利润(元)'].max()print(f)5.4.2 获取数值分布情况:describe()
import pandas as pddata = pd.read_excel('产品统计表.xlsx')a = data.describe()print(a)
成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)count 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000mean 52.000000 128.428571 51.142857 2971.714286 6879.571429 3907.857143std 31.112698 50.483849 20.053500 2391.447659 4352.763331 2002.194498min 16.000000 65.000000 23.000000 368.000000 1495.000000 1127.00000025% 26.000000 94.500000 38.000000 948.000000 3861.000000 2913.00000050% 58.000000 124.000000 58.000000 3364.000000 7192.000000 3828.00000075% 74.000000 167.000000 61.500000 4077.000000 8581.000000 4504.000000max 90.000000 187.000000 78.000000 7020.000000 14586.000000 7566.000000
获取单列的
b = data['利润(元)'].describe()print(b)
count 7.000000mean 3907.857143std 2002.194498min 1127.00000025% 2913.00000050% 3828.00000075% 4504.000000max 7566.000000Name: 利润(元), dtype: float645.4.3 计算相关系数:corr()
import pandas as pddata = pd.read_excel('相关性分析.xlsx')print(data)
代理商编号 年销售额(万元) 年广告费投入额(万元) 成本费用(万元) 管理费用(万元)0 A-001 20.5 15.6 2.00 0.801 A-003 24.5 16.7 2.54 0.942 B-002 31.8 20.4 2.96 0.883 B-006 34.9 22.6 3.02 0.794 B-008 39.4 25.7 3.14 0.845 C-003 44.5 28.8 4.00 0.806 C-004 49.6 32.1 6.84 0.857 C-007 54.8 35.9 5.60 0.918 D-006 58.5 38.7 6.45 0.90
corr()函数获取相关系数
a = data.corr()print(a)
年销售额(万元) 年广告费投入额(万元) 成本费用(万元) 管理费用(万元)年销售额(万元) 1.000000 0.996275 0.914428 0.218317年广告费投入额(万元) 0.996275 1.000000 0.918404 0.223187成本费用(万元) 0.914428 0.918404 1.000000 0.284286管理费用(万元) 0.218317 0.223187 0.284286 1.000000
获取指定列与其他列的相关系数
b = data.corr()['年销售额(万元)']print(b)
年销售额(万元) 1.000000年广告费投入额(万元) 0.996275成本费用(万元) 0.914428管理费用(万元) 0.218317Name: 年销售额(万元), dtype: float645.4.4 分组汇总数据:groupby()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-46g9qgQw-1637655972913)(C:\Users\14051\AppData\Roaming\Typora\typora-user-images\image-20211123135643804.png)]
import pandas as pddata = pd.read_excel('产品统计表.xlsx')a = data.groupby('产品') #根据产品列分组print(a)
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000213943E4640>
groupby()函数返回的是一个DataFrameBy对象,该对象包含分组后的数据,但是不能直观地显示出来。
b = data.groupby('产品').sum()print(b)
成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)产品 单肩包 116 248 121 7018 15004 7986手提包 36 147 26 936 3822 2886背包 32 130 83 1328 5395 4067钱包 180 374 128 11520 23936 12416
分组后获取指定列的汇总情况
c = data.groupby('产品')['利润(元)'].sum()print(c)
产品单肩包 7986手提包 2886背包 4067钱包 12416Name: 利润(元), dtype: int64
获取多列的汇总情况
d = data.groupby('产品')['数量(个)', '利润(元)'].sum()print(d)
数量(个) 利润(元)产品 单肩包 121 7986手提包 26 2886背包 83 4067钱包 128 124165.4.5 创建数据透视表:pivot_table()values参数用于指定要计算的列index参数用于指定一个列作为数据透视表的行标签aggfunc参数用于指定参数values的计算类型
import pandas as pddata = pd.read_excel('产品统计表.xlsx')a = pd.pivot_table(data, values = '利润(元)', index = '产品', aggfunc = 'sum') #data.groupby('产品')['利润(元)'].sum() 同样功能print(a)
利润(元)产品 单肩包 7986手提包 2886背包 4067钱包 12416
获取多列的情况
b = pd.pivot_table(data, values = ['利润(元)', '成本(元)'], index = '产品', aggfunc = 'sum')print(b)
利润(元) 成本(元)产品 单肩包 7986 7018手提包 2886 936背包 4067 1328钱包 12416 11520
ta = pd.read_excel(‘相关性分析.xlsx’)
print(data)
``python 代理商编号 年销售额(万元) 年广告费投入额(万元) 成本费用(万元) 管理费用(万元)0 A-001 20.5 15.6 2.00 0.801 A-003 24.5 16.7 2.54 0.942 B-002 31.8 20.4 2.96 0.883 B-006 34.9 22.6 3.02 0.794 B-008 39.4 25.7 3.14 0.845 C-003 44.5 28.8 4.00 0.806 C-004 49.6 32.1 6.84 0.857 C-007 54.8 35.9 5.60 0.918 D-006 58.5 38.7 6.45 0.90
corr()函数获取相关系数
a = data.corr()print(a)
年销售额(万元) 年广告费投入额(万元) 成本费用(万元) 管理费用(万元)年销售额(万元) 1.000000 0.996275 0.914428 0.218317年广告费投入额(万元) 0.996275 1.000000 0.918404 0.223187成本费用(万元) 0.914428 0.918404 1.000000 0.284286管理费用(万元) 0.218317 0.223187 0.284286 1.000000
获取指定列与其他列的相关系数
b = data.corr()['年销售额(万元)']print(b)
年销售额(万元) 1.000000年广告费投入额(万元) 0.996275成本费用(万元) 0.914428管理费用(万元) 0.218317Name: 年销售额(万元), dtype: float645.4.4 分组汇总数据:groupby()
[外链图片转存中…(img-46g9qgQw-1637655972913)]
import pandas as pddata = pd.read_excel('产品统计表.xlsx')a = data.groupby('产品') #根据产品列分组print(a)
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000213943E4640>
groupby()函数返回的是一个DataFrameBy对象,该对象包含分组后的数据,但是不能直观地显示出来。
b = data.groupby('产品').sum()print(b)
成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)产品 单肩包 116 248 121 7018 15004 7986手提包 36 147 26 936 3822 2886背包 32 130 83 1328 5395 4067钱包 180 374 128 11520 23936 12416
分组后获取指定列的汇总情况
c = data.groupby('产品')['利润(元)'].sum()print(c)
产品单肩包 7986手提包 2886背包 4067钱包 12416Name: 利润(元), dtype: int64
获取多列的汇总情况
d = data.groupby('产品')['数量(个)', '利润(元)'].sum()print(d)
数量(个) 利润(元)产品 单肩包 121 7986手提包 26 2886背包 83 4067钱包 128 124165.4.5 创建数据透视表:pivot_table()values参数用于指定要计算的列index参数用于指定一个列作为数据透视表的行标签aggfunc参数用于指定参数values的计算类型
import pandas as pddata = pd.read_excel('产品统计表.xlsx')a = pd.pivot_table(data, values = '利润(元)', index = '产品', aggfunc = 'sum') #data.groupby('产品')['利润(元)'].sum() 同样功能print(a)
利润(元)产品 单肩包 7986手提包 2886背包 4067钱包 12416
获取多列的情况
b = pd.pivot_table(data, values = ['利润(元)', '成本(元)'], index = '产品', aggfunc = 'sum')print(b)
利润(元) 成本(元)产品 单肩包 7986 7018手提包 2886 936背包 4067 1328钱包 12416 11520
标签: #pandas 列类型 #pandas 二维转一维