前言:
现时兄弟们对“线程池满了怎么处理”都比较着重,兄弟们都需要学习一些“线程池满了怎么处理”的相关知识。那么小编在网摘上汇集了一些有关“线程池满了怎么处理””的相关文章,希望我们能喜欢,小伙伴们一起来了解一下吧!欢迎大家关注今日头条号「JAVA前线」查看更多精彩分享文章,主要包括源码分析、实际应用、架构思维、职场分享、产品思考
0 文章概述
大家可能都遇到过DUBBO线程池打满这个问题,刚开始遇到这个问题可能会比较慌,常见方案可能就是重启服务,但也不知道重启是否可以解决。我认为重启不仅不能解决问题,甚至有可能加剧问题,这是为什么呢?本文我们就一起分析DUBBO线程池打满这个问题。
1 基础知识1.1 DUBBO线程模型1.1.1 基本概念
DUBBO底层网络通信采用Netty框架,我们编写一个Netty服务端进行观察:
public class NettyServer { public static void main(String[] args) throws Exception { EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup(8); try { ServerBootstrap bootstrap = new ServerBootstrap(); bootstrap.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .option(ChannelOption.SO_BACKLOG, 128) .childOption(ChannelOption.SO_KEEPALIVE, true) .childHandler(new ChannelInitializer<SocketChannel>() { @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new NettyServerHandler()); } }); ChannelFuture channelFuture = bootstrap.bind(7777).sync(); System.out.println("服务端准备就绪"); channelFuture.channel().closeFuture().sync(); } catch (Exception ex) { System.out.println(ex.getMessage()); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } }}
BossGroup线程组只有一个线程处理客户端连接请求,连接完成后将完成三次握手的SocketChannel连接分发给WorkerGroup处理读写请求,这两个线程组被称为「IO线程」。
我们再引出「业务线程」这个概念。服务生产者接收到请求后,如果处理逻辑可以快速处理完成,那么可以直接放在IO线程处理,从而减少线程池调度与上下文切换。但是如果处理逻辑非常耗时,或者会发起新IO请求例如查询数据库,那么必须派发到业务线程池处理。
DUBBO提供了多种线程模型,选择线程模型需要在配置文件指定dispatcher属性:
<dubbo:protocol name="dubbo" dispatcher="all" /><dubbo:protocol name="dubbo" dispatcher="direct" /><dubbo:protocol name="dubbo" dispatcher="message" /><dubbo:protocol name="dubbo" dispatcher="execution" /><dubbo:protocol name="dubbo" dispatcher="connection" />
不同线程模型在选择是使用IO线程还是业务线程,DUBBO官网文档说明:
all所有消息都派发到业务线程池,包括请求,响应,连接事件,断开事件,心跳direct所有消息都不派发到业务线程池,全部在IO线程直接执行message只有请求响应消息派发到业务线程池,其它连接断开事件,心跳等消息直接在IO线程执行execution只有请求消息派发到业务线程池,响应和其它连接断开事件,心跳等消息直接在IO线程执行connection在IO线程上将连接断开事件放入队列,有序逐个执行,其它消息派发到业务线程池
1.1.2 确定时机
生产者和消费者在初始化时确定线程模型:
// 生产者public class NettyServer extends AbstractServer implements Server { public NettyServer(URL url, ChannelHandler handler) throws RemotingException { super(url, ChannelHandlers.wrap(handler, ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME))); }}// 消费者public class NettyClient extends AbstractClient { public NettyClient(final URL url, final ChannelHandler handler) throws RemotingException { super(url, wrapChannelHandler(url, handler)); }}
生产者和消费者默认线程模型都会使用AllDispatcher,ChannelHandlers.wrap方法可以获取Dispatch自适应扩展点。如果我们在配置文件中指定dispatcher,扩展点加载器会从URL获取属性值加载对应线程模型。本文以生产者为例进行分析:
public class NettyServer extends AbstractServer implements Server { public NettyServer(URL url, ChannelHandler handler) throws RemotingException { // ChannelHandlers.wrap确定线程策略 super(url, ChannelHandlers.wrap(handler, ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME))); }}public class ChannelHandlers { protected ChannelHandler wrapInternal(ChannelHandler handler, URL url) { return new MultiMessageHandler(new HeartbeatHandler(ExtensionLoader.getExtensionLoader(Dispatcher.class).getAdaptiveExtension().dispatch(handler, url))); }}@SPI(AllDispatcher.NAME)public interface Dispatcher { @Adaptive({Constants.DISPATCHER_KEY, "channel.handler"}) ChannelHandler dispatch(ChannelHandler handler, URL url);}
1.1.3 源码分析
我们分析其中两个线程模型源码,其它线程模型请阅读DUBBO源码。AllDispatcher模型所有消息都派发到业务线程池,包括请求,响应,连接事件,断开事件,心跳:
public class AllDispatcher implements Dispatcher { // 线程模型名称 public static final String NAME = "all"; // 具体实现策略 @Override public ChannelHandler dispatch(ChannelHandler handler, URL url) { return new AllChannelHandler(handler, url); }}public class AllChannelHandler extends WrappedChannelHandler { @Override public void connected(Channel channel) throws RemotingException { // 连接完成事件交给业务线程池 ExecutorService cexecutor = getExecutorService(); try { cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.CONNECTED)); } catch (Throwable t) { throw new ExecutionException("connect event", channel, getClass() + " error when process connected event", t); } } @Override public void disconnected(Channel channel) throws RemotingException { // 断开连接事件交给业务线程池 ExecutorService cexecutor = getExecutorService(); try { cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.DISCONNECTED)); } catch (Throwable t) { throw new ExecutionException("disconnect event", channel, getClass() + " error when process disconnected event", t); } } @Override public void received(Channel channel, Object message) throws RemotingException { // 请求响应事件交给业务线程池 ExecutorService cexecutor = getExecutorService(); try { cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message)); } catch (Throwable t) { if(message instanceof Request && t instanceof RejectedExecutionException) { Request request = (Request)message; if(request.isTwoWay()) { String msg = "Server side(" + url.getIp() + "," + url.getPort() + ") threadpool is exhausted ,detail msg:" + t.getMessage(); Response response = new Response(request.getId(), request.getVersion()); response.setStatus(Response.SERVER_THREADPOOL_EXHAUSTED_ERROR); response.setErrorMessage(msg); channel.send(response); return; } } throw new ExecutionException(message, channel, getClass() + " error when process received event", t); } } @Override public void caught(Channel channel, Throwable exception) throws RemotingException { // 异常事件交给业务线程池 ExecutorService cexecutor = getExecutorService(); try { cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.CAUGHT, exception)); } catch (Throwable t) { throw new ExecutionException("caught event", channel, getClass() + " error when process caught event", t); } }}
DirectDispatcher策略所有消息都不派发到业务线程池,全部在IO线程直接执行:
public class DirectDispatcher implements Dispatcher { // 线程模型名称 public static final String NAME = "direct"; // 具体实现策略 @Override public ChannelHandler dispatch(ChannelHandler handler, URL url) { // 直接返回handler表示所有事件都交给IO线程处理 return handler; }}
1.2 DUBBO线程池策略1.2.1 基本概念
上个章节分析了线程模型,我们知道不同的线程模型会选择使用还是IO线程还是业务线程。如果使用业务线程池,那么使用什么线程池策略是本章节需要回答的问题。DUBBO官网线程派发模型图展示了线程模型和线程池策略的关系:
DUBBO提供了多种线程池策略,选择线程池策略需要在配置文件指定threadpool属性:
<dubbo:protocol name="dubbo" threadpool="fixed" threads="100" /><dubbo:protocol name="dubbo" threadpool="cached" threads="100" /><dubbo:protocol name="dubbo" threadpool="limited" threads="100" /><dubbo:protocol name="dubbo" threadpool="eager" threads="100" />
不同线程池策略会创建不同特性的线程池:
fixed包含固定个数线程cached线程空闲一分钟会被回收,当新请求到来时会创建新线程limited线程个数随着任务增加而增加,但不会超过最大阈值。空闲线程不会被回收eager当所有核心线程数都处于忙碌状态时,优先创建新线程执行任务,而不是立即放入队列
1.2.2 确定时机
本文我们以AllDispatcher为例分析线程池策略在什么时候确定:
public class AllDispatcher implements Dispatcher { public static final String NAME = "all"; @Override public ChannelHandler dispatch(ChannelHandler handler, URL url) { return new AllChannelHandler(handler, url); }}public class AllChannelHandler extends WrappedChannelHandler { public AllChannelHandler(ChannelHandler handler, URL url) { super(handler, url); }}
在WrappedChannelHandler构造函数中如果配置指定了threadpool属性,扩展点加载器会从URL获取属性值加载对应线程池策略,默认策略为fixed:
public class WrappedChannelHandler implements ChannelHandlerDelegate { public WrappedChannelHandler(ChannelHandler handler, URL url) { this.handler = handler; this.url = url; // 获取线程池自适应扩展点 executor = (ExecutorService) ExtensionLoader.getExtensionLoader(ThreadPool.class).getAdaptiveExtension().getExecutor(url); String componentKey = Constants.EXECUTOR_SERVICE_COMPONENT_KEY; if (Constants.CONSUMER_SIDE.equalsIgnoreCase(url.getParameter(Constants.SIDE_KEY))) { componentKey = Constants.CONSUMER_SIDE; } DataStore dataStore = ExtensionLoader.getExtensionLoader(DataStore.class).getDefaultExtension(); dataStore.put(componentKey, Integer.toString(url.getPort()), executor); }}@SPI("fixed")public interface ThreadPool { @Adaptive({Constants.THREADPOOL_KEY}) Executor getExecutor(URL url);}
1.2.3 源码分析(1) FixedThreadPool
public class FixedThreadPool implements ThreadPool { @Override public Executor getExecutor(URL url) { // 线程名称 String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME); // 线程个数默认200 int threads = url.getParameter(Constants.THREADS_KEY, Constants.DEFAULT_THREADS); // 队列容量默认0 int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES); // 队列容量等于0使用阻塞队列SynchronousQueue // 队列容量小于0使用无界阻塞队列LinkedBlockingQueue // 队列容量大于0使用有界阻塞队列LinkedBlockingQueue return new ThreadPoolExecutor(threads, threads, 0, TimeUnit.MILLISECONDS, queues == 0 ? new SynchronousQueue<Runnable>() : (queues < 0 ? new LinkedBlockingQueue<Runnable>() : new LinkedBlockingQueue<Runnable>(queues)), new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url)); }}
(2) CachedThreadPool
public class CachedThreadPool implements ThreadPool { @Override public Executor getExecutor(URL url) { // 获取线程名称 String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME); // 核心线程数默认0 int cores = url.getParameter(Constants.CORE_THREADS_KEY, Constants.DEFAULT_CORE_THREADS); // 最大线程数默认Int最大值 int threads = url.getParameter(Constants.THREADS_KEY, Integer.MAX_VALUE); // 队列容量默认0 int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES); // 线程空闲多少时间被回收默认1分钟 int alive = url.getParameter(Constants.ALIVE_KEY, Constants.DEFAULT_ALIVE); // 队列容量等于0使用阻塞队列SynchronousQueue // 队列容量小于0使用无界阻塞队列LinkedBlockingQueue // 队列容量大于0使用有界阻塞队列LinkedBlockingQueue return new ThreadPoolExecutor(cores, threads, alive, TimeUnit.MILLISECONDS, queues == 0 ? new SynchronousQueue<Runnable>() : (queues < 0 ? new LinkedBlockingQueue<Runnable>() : new LinkedBlockingQueue<Runnable>(queues)), new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url)); }}
(3) LimitedThreadPool
public class LimitedThreadPool implements ThreadPool { @Override public Executor getExecutor(URL url) { // 获取线程名称 String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME); // 核心线程数默认0 int cores = url.getParameter(Constants.CORE_THREADS_KEY, Constants.DEFAULT_CORE_THREADS); // 最大线程数默认200 int threads = url.getParameter(Constants.THREADS_KEY, Constants.DEFAULT_THREADS); // 队列容量默认0 int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES); // 队列容量等于0使用阻塞队列SynchronousQueue // 队列容量小于0使用无界阻塞队列LinkedBlockingQueue // 队列容量大于0使用有界阻塞队列LinkedBlockingQueue // keepalive时间设置Long.MAX_VALUE表示不回收空闲线程 return new ThreadPoolExecutor(cores, threads, Long.MAX_VALUE, TimeUnit.MILLISECONDS, queues == 0 ? new SynchronousQueue<Runnable>() : (queues < 0 ? new LinkedBlockingQueue<Runnable>() : new LinkedBlockingQueue<Runnable>(queues)), new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url)); }}
(4) EagerThreadPool
我们知道ThreadPoolExecutor是普通线程执行器。当线程池核心线程达到阈值时新任务放入队列,当队列已满开启新线程处理,当前线程数达到最大线程数时执行拒绝策略。
但是EagerThreadPool自定义线程执行策略,当线程池核心线程达到阈值时,新任务不会放入队列而是开启新线程进行处理(要求当前线程数没有超过最大线程数)。当前线程数达到最大线程数时任务放入队列。
public class EagerThreadPool implements ThreadPool { @Override public Executor getExecutor(URL url) { // 线程名 String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME); // 核心线程数默认0 int cores = url.getParameter(Constants.CORE_THREADS_KEY, Constants.DEFAULT_CORE_THREADS); // 最大线程数默认Int最大值 int threads = url.getParameter(Constants.THREADS_KEY, Integer.MAX_VALUE); // 队列容量默认0 int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES); // 线程空闲多少时间被回收默认1分钟 int alive = url.getParameter(Constants.ALIVE_KEY, Constants.DEFAULT_ALIVE); // 初始化自定义线程池和队列重写相关方法 TaskQueue<Runnable> taskQueue = new TaskQueue<Runnable>(queues <= 0 ? 1 : queues); EagerThreadPoolExecutor executor = new EagerThreadPoolExecutor(cores, threads, alive, TimeUnit.MILLISECONDS, taskQueue, new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url)); taskQueue.setExecutor(executor); return executor; }}
1.3 一个公式
现在我们知道DUBBO会选择线程池策略进行业务处理,那么应该如何估算可能产生的线程数呢?我们首先分析一个问题:一个公司有7200名员工,每天上班打卡时间是早上8点到8点30分,每次打卡时间系统执行时长为5秒。请问RT、QPS、并发量分别是多少?
RT表示响应时间,问题已经告诉了我们答案:
RT = 5
QPS表示每秒查询量,假设签到行为平均分布:
QPS = 7200 / (30 * 60) = 4
并发量表示系统同时处理的请求数量:
并发量 = QPS x RT = 4 x 5 = 20
根据上述实例引出如下公式:
并发量 = QPS x RT
如果系统为每一个请求分配一个处理线程,那么并发量可以近似等于线程数。基于上述公式不难看出并发量受QPS和RT影响,这两个指标任意一个上升就会导致并发量上升。
但是这只是理想情况,因为并发量受限于系统能力而不可能持续上升,例如DUBBO线程池就对线程数做了限制,超出最大线程数限制则会执行拒绝策略,而拒绝策略会提示线程池已满,这就是DUBBO线程池打满问题的根源。下面我们分析RT上升和QPS上升这两个原因。
2 RT上升2.1 生产者发生慢服务2.1.1 原因分析(1) 生产者配置
<beans> <dubbo:registry address="zookeeper://127.0.0.1:2181" /> <dubbo:protocol name="dubbo" port="9999" /> <dubbo:service interface="com.java.front.dubbo.demo.provider.HelloService" ref="helloService" /></beans>
(2) 生产者业务
package com.java.front.dubbo.demo.provider;public interface HelloService { public String sayHello(String name) throws Exception;}public class HelloServiceImpl implements HelloService { public String sayHello(String name) throws Exception { String result = "hello[" + name + "]"; // 模拟慢服务 Thread.sleep(10000L); System.out.println("生产者执行结果" + result); return result; }}
(3) 消费者配置
<beans> <dubbo:registry address="zookeeper://127.0.0.1:2181" /> <dubbo:reference id="helloService" interface="com.java.front.dubbo.demo.provider.HelloService" /></beans>
(4) 消费者业务
public class Consumer { @Test public void testThread() { ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext(new String[] { "classpath*:METAINF/spring/dubbo-consumer.xml" }); context.start(); for (int i = 0; i < 500; i++) { new Thread(new Runnable() { @Override public void run() { HelloService helloService = (HelloService) context.getBean("helloService"); String result; try { result = helloService.sayHello("微信公众号「JAVA前线」"); System.out.println("客户端收到结果" + result); } catch (Exception e) { System.out.println(e.getMessage()); } } }).start(); } }}
依次运行生产者和消费者代码,会发现日志中出现报错信息。生产者日志会打印线程池已满:
Caused by: java.util.concurrent.RejectedExecutionException: Thread pool is EXHAUSTED! Thread Name: DubboServerHandler-x.x.x.x:9999, Pool Size: 200 (active: 200, core: 200, max: 200, largest: 200), Task: 201 (completed: 1), Executor status:(isShutdown:false, isTerminated:false, isTerminating:false), in dubbo://x.x.x.x:9999!at org.apache.dubbo.common.threadpool.support.AbortPolicyWithReport.rejectedExecution(AbortPolicyWithReport.java:67)at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:830)at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1379)at org.apache.dubbo.remoting.transport.dispatcher.all.AllChannelHandler.caught(AllChannelHandler.java:88)
消费者日志不仅会打印线程池已满,还会打印服务提供者信息和调用方法,我们可以根据日志找到哪一个方法有问题:
Failed to invoke the method sayHello in the service com.java.front.dubbo.demo.provider.HelloService. Tried 3 times of the providers [x.x.x.x:9999] (1/1) from the registry 127.0.0.1:2181 on the consumer x.x.x.x using the dubbo version 2.7.0-SNAPSHOT. Last error is: Failed to invoke remote method: sayHello, provider: dubbo://x.x.x.x:9999/com.java.front.dubbo.demo.provider.HelloService?anyhost=true&application=xpz-consumer1&check=false&dubbo=2.0.2&generic=false&group=&interface=com.java.front.dubbo.demo.provider.HelloService&logger=log4j&methods=sayHello&pid=33432®ister.ip=x.x.x.x&release=2.7.0-SNAPSHOT&remote.application=xpz-provider&remote.timestamp=1618632597509&side=consumer&timeout=100000000×tamp=1618632617392, cause: Server side(x.x.x.x,9999) threadpool is exhausted ,detail msg:Thread pool is EXHAUSTED! Thread Name: DubboServerHandler-x.x.x.x:9999, Pool Size: 200 (active: 200, core: 200, max: 200, largest: 200), Task: 401 (completed: 201), Executor status:(isShutdown:false, isTerminated:false, isTerminating:false), in dubbo://x.x.x.x:9999!
2.1.2 解决方案(1) 找出慢服务
DUBBO线程池打满时会执行拒绝策略:
public class AbortPolicyWithReport extends ThreadPoolExecutor.AbortPolicy { protected static final Logger logger = LoggerFactory.getLogger(AbortPolicyWithReport.class); private final String threadName; private final URL url; private static volatile long lastPrintTime = 0; private static Semaphore guard = new Semaphore(1); public AbortPolicyWithReport(String threadName, URL url) { this.threadName = threadName; this.url = url; } @Override public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { String msg = String.format("Thread pool is EXHAUSTED!" + " Thread Name: %s, Pool Size: %d (active: %d, core: %d, max: %d, largest: %d), Task: %d (completed: %d)," + " Executor status:(isShutdown:%s, isTerminated:%s, isTerminating:%s), in %s://%s:%d!", threadName, e.getPoolSize(), e.getActiveCount(), e.getCorePoolSize(), e.getMaximumPoolSize(), e.getLargestPoolSize(), e.getTaskCount(), e.getCompletedTaskCount(), e.isShutdown(), e.isTerminated(), e.isTerminating(), url.getProtocol(), url.getIp(), url.getPort()); logger.warn(msg); // 打印线程快照 dumpJStack(); throw new RejectedExecutionException(msg); } private void dumpJStack() { long now = System.currentTimeMillis(); // 每10分钟输出线程快照 if (now - lastPrintTime < 10 * 60 * 1000) { return; } if (!guard.tryAcquire()) { return; } ExecutorService pool = Executors.newSingleThreadExecutor(); pool.execute(() -> { String dumpPath = url.getParameter(Constants.DUMP_DIRECTORY, System.getProperty("user.home")); System.out.println("AbortPolicyWithReport dumpJStack directory=" + dumpPath); SimpleDateFormat sdf; String os = System.getProperty("os.name").toLowerCase(); // linux文件位置/home/xxx/Dubbo_JStack.log.2021-01-01_20:50:15 // windows文件位置/user/xxx/Dubbo_JStack.log.2020-01-01_20-50-15 if (os.contains("win")) { sdf = new SimpleDateFormat("yyyy-MM-dd_HH-mm-ss"); } else { sdf = new SimpleDateFormat("yyyy-MM-dd_HH:mm:ss"); } String dateStr = sdf.format(new Date()); try (FileOutputStream jStackStream = new FileOutputStream(new File(dumpPath, "Dubbo_JStack.log" + "." + dateStr))) { JVMUtil.jstack(jStackStream); } catch (Throwable t) { logger.error("dump jStack error", t); } finally { guard.release(); } lastPrintTime = System.currentTimeMillis(); }); pool.shutdown(); }}
拒绝策略会输出线程快照文件,在分析线程快照文件时BLOCKED和TIMED_WAITING线程状态需要我们重点关注。如果发现大量线程阻塞或者等待状态则可以定位到具体代码行:
DubboServerHandler-x.x.x.x:9999-thread-200 Id=230 TIMED_WAITINGat java.lang.Thread.sleep(Native Method)at com.java.front.dubbo.demo.provider.HelloServiceImpl.sayHello(HelloServiceImpl.java:13)at org.apache.dubbo.common.bytecode.Wrapper1.invokeMethod(Wrapper1.java)at org.apache.dubbo.rpc.proxy.javassist.JavassistProxyFactory$1.doInvoke(JavassistProxyFactory.java:56)at org.apache.dubbo.rpc.proxy.AbstractProxyInvoker.invoke(AbstractProxyInvoker.java:85)at org.apache.dubbo.config.invoker.DelegateProviderMetaDataInvoker.invoke(DelegateProviderMetaDataInvoker.java:56)at org.apache.dubbo.rpc.protocol.InvokerWrapper.invoke(InvokerWrapper.java:56)
(2) 优化慢服务
现在已经找到了慢服务,此时我们就可以优化慢服务了。优化慢服务就需要具体问题具体分析了,这不是本文的重点在此不进行展开。
2.2 生产者预热不充分2.2.1 原因分析
还有一种RT上升的情况是我们不能忽视的,这种情况就是提供者重启后预热不充分即被调用。因为当生产者刚启动时需要预热,需要和其它资源例如数据库、缓存等建立连接,建立连接是需要时间的。如果此时大量消费者请求到未预热的生产者,链路时间增加了连接时间,RT时间必然会增加,从而也会导致DUBBO线程池打满问题。
2.2.2 解决方案(1) 等待生产者充分预热
因为生产者预热不充分导致线程池打满问题,最容易发生在系统发布时。例如发布了一台机器后发现线上出现线程池打满问题,千万不要着急重启机器,而是给机器一段时间预热,等连接建立后问题大概率消失。同时我们在发布时也要分多批次发布,不要一次发布太多机器导致服务因为预热问题造成大面积影响。
(2) DUBBO升级版本大于等于2.7.4
DUBBO消费者在调用选择生产者时本身就会执行预热逻辑,为什么还会出现预热不充分问题?这是因为2.5.5之前版本以及2.7.2版本预热机制是有问题的,简而言之就是获取启动时间不正确,2.7.4版本彻底解决了这个问题,所以我们要避免使用问题版本。下面我们阅读2.7.0版本预热机制源码,看看预热机制如何生效:
public class RandomLoadBalance extends AbstractLoadBalance { public static final String NAME = "random"; @Override protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) { // invokers数量 int length = invokers.size(); // 权重是否相同 boolean sameWeight = true; // invokers权重数组 int[] weights = new int[length]; // 第一个invoker权重 int firstWeight = getWeight(invokers.get(0), invocation); weights[0] = firstWeight; // 权重值之和 int totalWeight = firstWeight; for (int i = 1; i < length; i++) { // 计算权重值 int weight = getWeight(invokers.get(i), invocation); weights[i] = weight; totalWeight += weight; // 任意一个invoker权重值不等于第一个invoker权重值则sameWeight设置为FALSE if (sameWeight && weight != firstWeight) { sameWeight = false; } } // 权重值不等则根据总权重值计算 if (totalWeight > 0 && !sameWeight) { int offset = ThreadLocalRandom.current().nextInt(totalWeight); // 不断减去权重值当小于0时直接返回 for (int i = 0; i < length; i++) { offset -= weights[i]; if (offset < 0) { return invokers.get(i); } } } // 所有服务权重值一致则随机返回 return invokers.get(ThreadLocalRandom.current().nextInt(length)); }}public abstract class AbstractLoadBalance implements LoadBalance { static int calculateWarmupWeight(int uptime, int warmup, int weight) { // uptime/(warmup*weight) // 如果当前服务提供者没过预热期,用户设置的权重将通过uptime/warmup减小 // 如果服务提供者设置权重很大但是还没过预热时间,重新计算权重会很小 int ww = (int) ((float) uptime / ((float) warmup / (float) weight)); return ww < 1 ? 1 : (ww > weight ? weight : ww); } protected int getWeight(Invoker<?> invoker, Invocation invocation) { // 获取invoker设置权重值默认权重=100 int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // 如果权重大于0 if (weight > 0) { // 服务提供者发布服务时间戳 long timestamp = invoker.getUrl().getParameter(Constants.REMOTE_TIMESTAMP_KEY, 0L); if (timestamp > 0L) { // 服务已经发布多少时间 int uptime = (int) (System.currentTimeMillis() - timestamp); // 预热时间默认10分钟 int warmup = invoker.getUrl().getParameter(Constants.WARMUP_KEY, Constants.DEFAULT_WARMUP); // 生产者发布时间大于0但是小于预热时间 if (uptime > 0 && uptime < warmup) { // 重新计算权重值 weight = calculateWarmupWeight(uptime, warmup, weight); } } } // 服务发布时间大于预热时间直接返回设置权重值 return weight >= 0 ? weight : 0; }}
3 QPS上升
上面章节大篇幅讨论了由于RT上升造成的线程池打满问题,现在我们讨论另一个参数QPS。当上游流量激增会导致创建大量线程池,也会造成线程池打满问题。这时如果发现QPS超出了系统承受能力,我们不得不采用降级方案保护系统,请参看我之前文章技术系统高可用性的本质是合理应对波动。
4 文章总结
本文首先介绍了DUBBO线程模型和线程池策略,然后我们引出了公式,发现并发量受RT和QPS两个参数影响,这两个参数任意一个上升都可以造成线程池打满问题。生产者出现慢服务或者预热不充分都有可能造成RT上升,而上游流量激增会造成QPS上升,同时本文也给出了解决方案。DUBBO线程池打满是一个必须重视的问题,希望本文对大家有所帮助。
欢迎大家关注今日头条号「JAVA前线」查看更多精彩分享文章,主要包括源码分析、实际应用、架构思维、职场分享、产品思考
标签: #线程池满了怎么处理