龙空技术网

linux内核调度算法--快速找到最高优先级进程

linux技术栈 763

前言:

现在看官们对“linux进程抢占”大概比较关注,大家都想要剖析一些“linux进程抢占”的相关资讯。那么小编也在网络上收集了一些有关“linux进程抢占””的相关知识,希望大家能喜欢,朋友们快快来学习一下吧!

linux内核调度程序很先进很强大,管理你的LINUX上跑的大量的乱七八糟的进程,同时还保持着对用户操作的高灵敏响应,如果可能,为什么不把这种思想放到自己的应用程序里呢?或者,有没有可能更好的实现自己的应用,使得操作系统能够以自己的意志来分配资源给自己的进程?

带着这两个问题来看看KERNEL。首先回顾上我们开发应用程序,基本上就两种类型,1、IO消耗型:比如hadoop上的trunk服务,很明显它的消耗主要在IO上,包括网络IO磁盘IO等等。2、CPU消耗型,比如mapreduce或者其他的需要对大量数据进行计算处理的组件,就象对高清视频压缩成适合手机观看分辨率的进程,他们的消耗主要在CPU上。当两类进程都在一台SERVER上运行时,操作系统会如何调度它们呢?现在的服务器都是SMP多核的,那么一个进程在多CPU时会来回切换吗?如果我有一个程序,既有IO消耗又有CPU消耗,怎么让多核更好的调度我的程序呢?

又多了几个问题。来看看内核调度程序吧,我们先从它的优先队列谈起吧。调度程序代码就在内核源码的kernel/sched.c的schedule函数中。

首先看下面的优先级队列,每一个runqueue都有。runqueue是什么?下面会详细说下,现在大家可以理解为,内核为每一颗CPU分配了一个runqueue,用于维护这颗CPU可以运行的进程。runqueue里,有几个成员是prio_array类型,这个东东就是优先队列,先看看它的定义:

struct prio_array {	unsigned int nr_active;    表示等待执行的进程总数	unsigned long bitmap[BITMAP_SIZE];    一个unsigned long在内核中只有32位哈,大家要跟64位OS上的C程序中的long区分开,那个是64位的。那么这个bitmap是干什么的呢?它是用位的方式,表示某个优先级上有没有待处理的队列,是实现快速找到最高待处理优先进程的关键。如果我定义了四种优先级,我只需要四位就能表示某个优先级上有没有进程要运行,例如优先级是2和3上有进程,那么就应该是0110.......非常省空间,效率也快,不是吗?	struct list_head queue[MAX_PRIO];     与上面的bitmap是对应的,它存储所有等待运行的进程。};

看看BITMAP_SIZE是怎么算出来的:#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))

那么,LINUX默认配置(如果你用默认选项编译内核的话)MAX_PRIO是140,就是说一共内核对进程一共定义了140种优先级。等待某个CPU来处理的进程中,可能包含许多种优先级的进程,但,LINUX是个抢占式调度算法的操作系统,就是说,需要调度时一定是找到最高优先级的进程执行。上面的BITMAP_SIZE值根据MAX_PRIO算出来为5,那么bitmap实际是32*5=160位,这样就包含了MAX_PRIO的140位。优先级队列是怎么使用的?看2649行代码:idx = sched_find_first_bit(array->bitmap);这个方法就用来快速的找到优先级最高的队列。看看它的实现可以方便我们理解这个优先级位的设计:

static inline int sched_find_first_bit(unsigned long *b){	if (unlikely(b[0]))		return __ffs(b[0]);	if (unlikely(b[1]))		return __ffs(b[1]) + 32;	if (unlikely(b[2]))		return __ffs(b[2]) + 64;	if (b[3])		return __ffs(b[3]) + 96;	return __ffs(b[4]) + 128;}

那么__ffs是干什么的?

static inline int __ffs(int x){	int r = 0; 	if (!x)		return 0;	if (!(x & 0xffff)) {		x >>= 16;		r += 16;	}	if (!(x & 0xff)) {		x >>= 8;		r += 8;	}	if (!(x & 0xf)) {		x >>= 4;		r += 4;	}	if (!(x & 3)) {		x >>= 2;		r += 2;	}	if (!(x & 1)) {		x >>= 1;		r += 1;	}	return r;}

sched_find_first_bit返回值就是最高优先级所在队列的序号,与queue是对应使用的哈,queue = array->queue + idx;这样就取到了要处理的进程队列。这个设计在查找优先级时是非常快的,非常值得我们学习。

需要C/C++ Linux服务器架构师学习资料私信“资料”(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

好,优先级队列搞明白了,现在来看看runqueue,每个runqueue包含三个优先级队列。

struct runqueue {	spinlock_t lock;   这是个自旋锁,nginx里解决惊群现象时也是用这个。与普通锁的区别就是,使用普通锁时,你去试图拿一把锁,结果发现已经被别人拿走了,你就在那睡觉,等别人锁用完了叫你起来。所以如果有一个人拿住锁了,一百个人都在门前睡觉等。当之前的人用完锁回来后,会叫醒所有100个等锁的人,然后这些人开始互相抢,抢到的人拿锁进去,其他的人继续等。自旋锁不同,当他去拿锁发现锁被别人拿走了,他在那不睡觉的等,稍打个盹就看看自己主动看看锁有没有还回来。大家比较出优劣了吗?  	/*	 * nr_running and cpu_load should be in the same cacheline because	 * remote CPUs use both these fields when doing load calculation.	 */	unsigned long nr_running;#ifdef CONFIG_SMP	unsigned long cpu_load;#endif	unsigned long long nr_switches;  	/*	 * This is part of a global counter where only the total sum	 * over all CPUs matters. A task can increase this counter on	 * one CPU and if it got migrated afterwards it may decrease	 * it on another CPU. Always updated under the runqueue lock:	 */	unsigned long nr_uninterruptible;  	unsigned long expired_timestamp;	unsigned long long timestamp_last_tick;	task_t *curr, *idle;	struct mm_struct *prev_mm;	prio_array_t *active, *expired, arrays[2];上面说了半天的优先级队列在这里,但是在runqueue里,为什么不只一个呢?这个在下面讲。	int best_expired_prio;	atomic_t nr_iowait;	... ...};

LINUX是一个时间多路复用的系统,就是说,通过把CPU执行时间分成许多片,再分配给进程们使用,造成即使单CPU系统,也貌似允许多个任务在同时执行。那么,时间片大小假设为100ms,过短过长,过长了有些不灵敏,过短了,连切换进程时可能都要消耗几毫秒的时间。分给100个进程执行,在所有进程都用完自己的时间片后,需要重新给所有的进程重新分配时间片,怎么分配呢?for循环遍历所有的run状态进程,重设时间片?这个性能无法容忍!太慢了,跟当前系统进程数相关。那么2.6内核怎么做的呢?它用了上面提到的两个优先级队列active和expired,顾名思义,active是还有时间片的进程队列,而expired是时间片耗尽必须重新分配时间片的进程队列。

这么设计的好处就是不用再循环一遍所有进程重设时间片了,看看调度函数是怎么玩的:

	array = rq->active;	if (unlikely(!array->nr_active)) {		/*		 * Switch the active and expired arrays.		 */		schedstat_inc(rq, sched_switch);		rq->active = rq->expired;		rq->expired = array;		array = rq->active;		rq->expired_timestamp = 0;		rq->best_expired_prio = MAX_PRIO;	} else		schedstat_inc(rq, sched_noswitch);

当所有运行进程的时间片都用完时,就把active和expired队列互换指针,没有遍历哦,而时间片耗尽的进程在出acitve队列入expired队列时,已经单独的重新分配好新时间片了。

再看一下schedule(void)调度函数,当某个进程休眠或者被抢占时,系统就开始调试schedule(void)决定接下来运行哪个进程。上面说过的东东都在这个函数里有体现哈。

asmlinkage void __sched schedule(void){	long *switch_count;	task_t *prev, *next;	runqueue_t *rq;	prio_array_t *array;	struct list_head *queue;	unsigned long long now;	unsigned long run_time;	int cpu, idx;  	/*	 * Test if we are atomic.  Since do_exit() needs to call into	 * schedule() atomically, we ignore that path for now.	 * Otherwise, whine if we are scheduling when we should not be.	 */	if (likely(!(current->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)))) {先看看当前运行进程的状态		if (unlikely(in_atomic())) {			printk(KERN_ERR "scheduling while atomic: "				"%s/0x%08x/%d\n",				current->comm, preempt_count(), current->pid);			dump_stack();		}	}	profile_hit(SCHED_PROFILING, __builtin_return_address(0));  need_resched:	preempt_disable();	prev = current;	release_kernel_lock(prev);need_resched_nonpreemptible:	rq = this_rq();      这行找到这个CPU对应的runqueue,再次强调,每个CPU有一个自己的runqueue  	/*	 * The idle thread is not allowed to schedule!	 * Remove this check after it has been exercised a bit.	 */	if (unlikely(current == rq->idle) && current->state != TASK_RUNNING) {		printk(KERN_ERR "bad: scheduling from the idle thread!\n");		dump_stack();	}  	schedstat_inc(rq, sched_cnt);	now = sched_clock();	if (likely(now - prev->timestamp < NS_MAX_SLEEP_AVG))		run_time = now - prev->timestamp;	else		run_time = NS_MAX_SLEEP_AVG;  	/*	 * Tasks with interactive credits get charged less run_time	 * at high sleep_avg to delay them losing their interactive	 * status	 */	if (HIGH_CREDIT(prev))		run_time /= (CURRENT_BONUS(prev) ? : 1);  	spin_lock_irq(&rq->lock);  	if (unlikely(current->flags & PF_DEAD))		current->state = EXIT_DEAD;	/*	 * if entering off of a kernel preemption go straight	 * to picking the next task.	 */	switch_count = &prev->nivcsw;	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {		switch_count = &prev->nvcsw;		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&				unlikely(signal_pending(prev))))			prev->state = TASK_RUNNING;		else {			if (prev->state == TASK_UNINTERRUPTIBLE)				rq->nr_uninterruptible++;			deactivate_task(prev, rq);		}	}  	cpu = smp_processor_id();	if (unlikely(!rq->nr_running)) {go_idle:		idle_balance(cpu, rq);		if (!rq->nr_running) {			next = rq->idle;			rq->expired_timestamp = 0;			wake_sleeping_dependent(cpu, rq);			/*			 * wake_sleeping_dependent() might have released			 * the runqueue, so break out if we got new			 * tasks meanwhile:			 */			if (!rq->nr_running)				goto switch_tasks;		}	} else {		if (dependent_sleeper(cpu, rq)) {			next = rq->idle;			goto switch_tasks;		}		/*		 * dependent_sleeper() releases and reacquires the runqueue		 * lock, hence go into the idle loop if the rq went		 * empty meanwhile:		 */		if (unlikely(!rq->nr_running))			goto go_idle;	}  	array = rq->active;	if (unlikely(!array->nr_active)) {       上面说过的,需要重新计算时间片时,就用已经计算好的expired队列了		/*		 * Switch the active and expired arrays.		 */		schedstat_inc(rq, sched_switch);		rq->active = rq->expired;		rq->expired = array;		array = rq->active;		rq->expired_timestamp = 0;		rq->best_expired_prio = MAX_PRIO;	} else		schedstat_inc(rq, sched_noswitch);  	idx = sched_find_first_bit(array->bitmap);         找到优先级最高的队列	queue = array->queue + idx;	next = list_entry(queue->next, task_t, run_list);  	if (!rt_task(next) && next->activated > 0) {		unsigned long long delta = now - next->timestamp;  		if (next->activated == 1)			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;  		array = next->array;		dequeue_task(next, array);		recalc_task_prio(next, next->timestamp + delta);		enqueue_task(next, array);	}	next->activated = 0;switch_tasks:	if (next == rq->idle)		schedstat_inc(rq, sched_goidle);	prefetch(next);	clear_tsk_need_resched(prev);	rcu_qsctr_inc(task_cpu(prev));  	prev->sleep_avg -= run_time;	if ((long)prev->sleep_avg <= 0) {		prev->sleep_avg = 0;		if (!(HIGH_CREDIT(prev) || LOW_CREDIT(prev)))			prev->interactive_credit--;	}	prev->timestamp = prev->last_ran = now;  	sched_info_switch(prev, next);	if (likely(prev != next)) {              表面现在正在执行的进程,不是选出来的优先级最高的进程		next->timestamp = now;		rq->nr_switches++;		rq->curr = next;		++*switch_count;  		prepare_arch_switch(rq, next);		prev = context_switch(rq, prev, next);              所以需要完成进程上下文切换,把之前的进程信息CACHE住		barrier();  		finish_task_switch(prev);	} else		spin_unlock_irq(&rq->lock);  	prev = current;	if (unlikely(reacquire_kernel_lock(prev) < 0))		goto need_resched_nonpreemptible;	preempt_enable_no_resched();	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))		goto need_resched;}

当然,在我们程序中,也可以通过执行以下系统调用来改变自己进程的优先级。nice系统调用可以改变某个进程的基本优先级,setpriority可以改变一组进程的优先级。

标签: #linux进程抢占