龙空技术网

聊聊Java中的自定义异常

进击的Matrix 66

前言:

而今大家对“java自定义异常实验报告怎么写”大体比较看重,姐妹们都想要剖析一些“java自定义异常实验报告怎么写”的相关资讯。那么小编也在网摘上网罗了一些有关“java自定义异常实验报告怎么写””的相关资讯,希望我们能喜欢,朋友们一起来学习一下吧!

在学习Java的过程中,想必大家都一定学习过异常这个篇章,异常的基本特性和使用这里就不再多讲了。想必大家都能够理解看懂,并正确使用。

但是,光学会基本异常处理和使用不够的,在工作中常会有自定义业务异常的场景,根据不同的业务异常做对应异常处理,出现异常并不可怕,有时候是需要使用异常来驱动业务的处理,例如: 在使用唯一约束的数据库的时候,如果插入一条重复的数据,那么可以通过捕获唯一约束异常DuplicateKeyException,如果出现CommunicationsException是不是又要去处理呢?如果两种情况都使用同样业务逻辑来处理,是不是同样捕获呢?这个时候,其实如果在DAO层统一捕获Exception,然后向上抛出自定义异常,在调用成层根据对应的业务异常再进行处理,而且自定义异常能做很多轻量化处理(请看下文解释),是不是方便很多呢?所以这里自定义业务异常:既是对业务不同异常场景下的区分,又是通过异常来驱动业务流程的处理,以自定义异常好处很多。

Java中的异常

Java中默认的异常信息有哪些呢?Java程序中捕获异常之后会将异常进行输出,不知道细心的同学有没有注意到一点,输出的异常是什么东西呢?下面来看一个常见的ArithmeticException异常:

java.lang.ArithmeticException: / by zero at greenhouse.ExceptionTest.testException(ExceptionTest.java:16) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:44) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:15) at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:41) at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:20) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:76) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:193) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:52) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:191) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:42) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:184) at org.junit.runners.ParentRunner.run(ParentRunner.java:236) at org.junit.runner.JUnitCore.run(JUnitCore.java:157) at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:68) at com.intellij.rt.execution.junit.IdeaTestRunner$Repeater.startRunnerWithArgs(IdeaTestRunner.java:47) at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:242) at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:70)

再看看一个Java程序员耳熟能详的NullPointerException空指针异常:

java.lang.NullPointerException at greenhouse.ExceptionTest.testException(ExceptionTest.java:16) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:44) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:15) at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:41) at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:20) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:76) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:193) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:52) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:191) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:42) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:184) at org.junit.runners.ParentRunner.run(ParentRunner.java:236) at org.junit.runner.JUnitCore.run(JUnitCore.java:157) at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:68) at com.intellij.rt.execution.junit.IdeaTestRunner$Repeater.startRunnerWithArgs(IdeaTestRunner.java:47) at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:242) at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:70)

大家有没有发现一个特点,就是异常的输出中能够精确的输出异常出现的地点,精确到每一行代码,还有后面一大堆的执行过程类调用,也都打印出来了,这些信息从哪儿来呢?

这些信息是从栈中获取的,在打印异常日志的时候,会从JVM 栈中去获取这些调用信息。能够精确的定位异常出现的异常当然是好,但是我们有时候考虑到程序的性能,以及一些需求时,我们有时候并不需要完全的打印这些信息,并且去方法调用栈中获取相应的信息,是有性能消耗的,对于一些性能要求高的程序,我们完全可以在异常处理方面为程序性能做一个性能提升。

自定义Java异常类

所以如何避免输出这些堆栈信息呢? 那么自定义异常就可以解决这个问题:

首先,自定义异常需要继承RuntimeException,然后,再通过是重写fillInStackTracetoString 方法,例如下面我定义一个AppException异常:

package com.green.monitor.common.exception;import java.text.MessageFormat;/** * 自定义异常类 */public class AppException extends RuntimeException { private boolean isSuccess = false; private String key; private String info; public AppException(String key) {  super(key);  this.key = key;  this.info = key; } public AppException(String key, String message) {  super(MessageFormat.format("{0}[{1}]", key, message));  this.key = key;  this.info = message; } public AppException(String message, String key, String info) {  super(message);  this.key = key;  this.info = info; } public boolean isSuccess() {  return isSuccess; } public String getKey() {  return key; } public void setKey(String key) {  this.key = key; } public String getInfo() {  return info; } public void setInfo(String info) {  this.info = info; } @Override public Throwable fillInStackTrace() {  return this; } @Override public String toString() {  return MessageFormat.format("{0}[{1}]",this.key,this.info); }}
Java异常源码

那么为什么要重写fillInStackTrace,和 toString 方法呢? 我们首先来看源码是怎么一回事。

public class RuntimeException extends Exception {    static final long serialVersionUID = -7034897190745766939L;    /** Constructs a new runtime exception with <code>null</code> as its     * detail message.  The cause is not initialized, and may subsequently be     * initialized by a call to {@link #initCause}.     */    public RuntimeException() {       super();    }    /** Constructs a new runtime exception with the specified detail message.     * The cause is not initialized, and may subsequently be initialized by a     * call to {@link #initCause}.     *     * @param   message   the detail message. The detail message is saved for      *          later retrieval by the {@link #getMessage()} method.     */    public RuntimeException(String message) {        super(message);    }    /**     * Constructs a new runtime exception with the specified detail message and     * cause.  <p>Note that the detail message associated with     * <code>cause</code> is <i>not</i> automatically incorporated in     * this runtime exception's detail message.     *     * @param  message the detail message (which is saved for later retrieval     *         by the {@link #getMessage()} method).     * @param  cause the cause (which is saved for later retrieval by the     *         {@link #getCause()} method).  (A <tt>null</tt> value is     *         permitted, and indicates that the cause is nonexistent or     *         unknown.)     * @since  1.4     */    public RuntimeException(String message, Throwable cause) {        super(message, cause);    }    /** Constructs a new runtime exception with the specified cause and a     * detail message of <tt>(cause==null ? null : cause.toString())</tt>     * (which typically contains the class and detail message of     * <tt>cause</tt>).  This constructor is useful for runtime exceptions     * that are little more than wrappers for other throwables.     *     * @param  cause the cause (which is saved for later retrieval by the     *         {@link #getCause()} method).  (A <tt>null</tt> value is     *         permitted, and indicates that the cause is nonexistent or     *         unknown.)     * @since  1.4     */    public RuntimeException(Throwable cause) {        super(cause);    }}

RuntimeException是继承Exception,但是它里面只是调用了父类的方法,本身是没有做什么其余的操作。那么继续看Exception里面是怎么回事。

public class Exception extends Throwable {    static final long serialVersionUID = -3387516993124229948L;    /**     * Constructs a new exception with <code>null</code> as its detail message.     * The cause is not initialized, and may subsequently be initialized by a     * call to {@link #initCause}.     */    public Exception() {     super();    }    /**     * Constructs a new exception with the specified detail message.  The     * cause is not initialized, and may subsequently be initialized by     * a call to {@link #initCause}.     *     * @param   message   the detail message. The detail message is saved for      *          later retrieval by the {@link #getMessage()} method.     */    public Exception(String message) {     super(message);    }    /**     * Constructs a new exception with the specified detail message and     * cause.  <p>Note that the detail message associated with     * <code>cause</code> is <i>not</i> automatically incorporated in     * this exception's detail message.     *     * @param  message the detail message (which is saved for later retrieval     *         by the {@link #getMessage()} method).     * @param  cause the cause (which is saved for later retrieval by the     *         {@link #getCause()} method).  (A <tt>null</tt> value is     *         permitted, and indicates that the cause is nonexistent or     *         unknown.)     * @since  1.4     */    public Exception(String message, Throwable cause) {        super(message, cause);    }    /**     * Constructs a new exception with the specified cause and a detail     * message of <tt>(cause==null ? null : cause.toString())</tt> (which     * typically contains the class and detail message of <tt>cause</tt>).     * This constructor is useful for exceptions that are little more than     * wrappers for other throwables (for example, {@link     * java.security.PrivilegedActionException}).     *     * @param  cause the cause (which is saved for later retrieval by the     *         {@link #getCause()} method).  (A <tt>null</tt> value is     *         permitted, and indicates that the cause is nonexistent or     *         unknown.)     * @since  1.4     */    public Exception(Throwable cause) {        super(cause);    }}

从源码中可以看到,Exception里面也是直接调用了父类的方法,和RuntimeException一样,自己其实并没有做什么。那么直接来看Throwable里面是怎么一回事:

public class Throwable implements Serializable {  public Throwable(String message) {        fillInStackTrace();        detailMessage = message;    }         /**     * Fills in the execution stack trace. This method records within this     * <code>Throwable</code> object information about the current state of     * the stack frames for the current thread.     *     * @return  a reference to this <code>Throwable</code> instance.     * @see     java.lang.Throwable#printStackTrace()     */    public synchronized native Throwable fillInStackTrace();           /**     * Provides programmatic access to the stack trace information printed by     * {@link #printStackTrace()}.  Returns an array of stack trace elements,     * each representing one stack frame.  The zeroth element of the array     * (assuming the array's length is non-zero) represents the top of the     * stack, which is the last method invocation in the sequence.  Typically,     * this is the point at which this throwable was created and thrown.     * The last element of the array (assuming the array's length is non-zero)     * represents the bottom of the stack, which is the first method invocation     * in the sequence.     *     * <p>Some virtual machines may, under some circumstances, omit one     * or more stack frames from the stack trace.  In the extreme case,     * a virtual machine that has no stack trace information concerning     * this throwable is permitted to return a zero-length array from this     * method.  Generally speaking, the array returned by this method will     * contain one element for every frame that would be printed by     * <tt>printStackTrace</tt>.     *     * @return an array of stack trace elements representing the stack trace     *         pertaining to this throwable.     * @since  1.4     */    public StackTraceElement[] getStackTrace() {        return (StackTraceElement[]) getOurStackTrace().clone();    }    private synchronized StackTraceElement[] getOurStackTrace() {        // Initialize stack trace if this is the first call to this method        if (stackTrace == null) {            int depth = getStackTraceDepth();            stackTrace = new StackTraceElement[depth];            for (int i=0; i < depth; i++)                stackTrace[i] = getStackTraceElement(i);        }        return stackTrace;    }        /**     * Returns the number of elements in the stack trace (or 0 if the stack     * trace is unavailable).     *     * package-protection for use by SharedSecrets.     */    native int getStackTraceDepth();    /**     * Returns the specified element of the stack trace.     *     * package-protection for use by SharedSecrets.     *     * @param index index of the element to return.     * @throws IndexOutOfBoundsException if <tt>index < 0 ||     *         index >= getStackTraceDepth() </tt>     */    native StackTraceElement getStackTraceElement(int index);        /**     * Returns a short description of this throwable.     * The result is the concatenation of:     * <ul>     * <li> the {@linkplain Class#getName() name} of the class of this object     * <li> ": " (a colon and a space)     * <li> the result of invoking this object's {@link #getLocalizedMessage}     *      method     * </ul>     * If <tt>getLocalizedMessage</tt> returns <tt>null</tt>, then just     * the class name is returned.     *     * @return a string representation of this throwable.     */    public String toString() {        String s = getClass().getName();        String message = getLocalizedMessage();        return (message != null) ? (s + ": " + message) : s;    }

从源码中可以看到,到Throwable就几乎到头了,在fillInStackTrace() 方法是一个native方法,这方法也就是会调用底层的C语言,返回一个Throwable对象,toString 方法,返回的是throwable的简短描述信息,并且在getStackTrace 方法和 getOurStackTrace 中调用的都是native方法getStackTraceElement,而这个方法是返回指定的栈元素信息,所以这个过程肯定是消耗性能的,那么我们自定义异常中的重写toString方法和fillInStackTrace方法就可以不从栈中去获取异常信息,直接输出,这样对系统和程序来说,相对就没有那么"重",是一个优化性能的非常好的办法。

按照上面我们举例的自定义AppException异常,如果出现异常了,这个AppException异常输出是什么样的信息呢?请看下面吧:

@Test public void testException(){  try {   String str =null;   System.out.println(str.charAt(0));  }catch (Exception e){   throw new AppException("000001","空指针异常");  } }

执行上面单元测试,在异常异常的时候,系统将会打印我们自定义的异常信息:

000001[空指针异常]Process finished with exit code -1

所以特别简洁,优化了系统程序性能,让程序不这么“重”,所以对于性能要求特别要求的系统,赶紧自定义业务异常试一试吧!

最后欢迎大家点赞、收藏、评论,转发!

欢迎大家关注我的微信公众号!微信搜索:进击的Matrix

欢迎大家关注我的知乎!可乐

微信公众号-进击的Matrix

标签: #java自定义异常实验报告怎么写 #java自定义异常实验报告个人总结