前言:
如今你们对“spark 搭建”可能比较讲究,兄弟们都需要分析一些“spark 搭建”的相关知识。那么小编在网络上搜集了一些有关“spark 搭建””的相关知识,希望咱们能喜欢,小伙伴们一起来学习一下吧!一、Spark概述1、Spark简介
Spark是专为大规模数据处理而设计的,基于内存快速通用,可扩展的集群计算引擎,实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流,运算速度相比于MapReduce得到了显著的提高。
2、运行结构
Driver
运行Spark的Applicaion中main()函数,会创建SparkContext,SparkContext负责和Cluster-Manager进行通信,并负责申请资源、任务分配和监控等。
ClusterManager
负责申请和管理在WorkerNode上运行应用所需的资源,可以高效地在一个计算节点到数千个计算节点之间伸缩计算,目前包括Spark原生的ClusterManager、ApacheMesos和HadoopYARN。
Executor
Application运行在WorkerNode上的一个进程,作为工作节点负责运行Task任务,并且负责将数据存在内存或者磁盘上,每个 Application都有各自独立的一批Executor,任务间相互独立。
二、环境部署1、Scala环境
安装包管理
[root@hop01 opt]# tar -zxvf scala-2.12.2.tgz[root@hop01 opt]# mv scala-2.12.2 scala2.12
配置变量
[root@hop01 opt]# vim /etc/profileexport SCALA_HOME=/opt/scala2.12export PATH=$PATH:$SCALA_HOME/bin[root@hop01 opt]# source /etc/profile
版本查看
[root@hop01 opt]# scala -version
Scala环境需要部署在Spark运行的相关服务节点上。
2、Spark基础环境
安装包管理
[root@hop01 opt]# tar -zxvf spark-2.1.1-bin-hadoop2.7.tgz[root@hop01 opt]# mv spark-2.1.1-bin-hadoop2.7 spark2.1
配置变量
[root@hop01 opt]# vim /etc/profileexport SPARK_HOME=/opt/spark2.1export PATH=$PATH:$SPARK_HOME/bin[root@hop01 opt]# source /etc/profile
版本查看
[root@hop01 opt]# spark-shell3、Spark集群配置
服务节点
[root@hop01 opt]# cd /opt/spark2.1/conf/[root@hop01 conf]# cp slaves.template slaves[root@hop01 conf]# vim slaveshop01hop02hop03
环境配置
[root@hop01 conf]# cp spark-env.sh.template spark-env.sh[root@hop01 conf]# vim spark-env.shexport JAVA_HOME=/opt/jdk1.8export SCALA_HOME=/opt/scala2.12export SPARK_MASTER_IP=hop01export SPARK_LOCAL_IP=安装节点IPexport SPARK_WORKER_MEMORY=1gexport HADOOP_CONF_DIR=/opt/hadoop2.7/etc/hadoop
注意SPARK_LOCAL_IP的配置。
4、Spark启动
依赖Hadoop相关环境,所以要先启动。
启动:/opt/spark2.1/sbin/start-all.sh停止:/opt/spark2.1/sbin/stop-all.sh
这里在主节点会启动两个进程:Master和Worker,其他节点只启动一个Worker进程。
5、访问Spark集群
默认端口是:8080。
运行基础案例:
[root@hop01 spark2.1]# cd /opt/spark2.1/[root@hop01 spark2.1]# bin/spark-submit --class org.apache.spark.examples.SparkPi --master local examples/jars/spark-examples_2.11-2.1.1.jar运行结果:Pi is roughly 3.1455357276786384三、开发案例1、核心依赖
依赖Spark2.1.1版本:
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>2.1.1</version></dependency>
引入Scala编译插件:
<plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.2.2</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions></plugin>2、案例代码开发
读取指定位置的文件,并输出文件内容单词统计结果。
@RestControllerpublic class WordWeb implements Serializable { @GetMapping("/word/web") public String getWeb (){ // 1、创建Spark的配置对象 SparkConf sparkConf = new SparkConf().setAppName("LocalCount") .setMaster("local[*]"); // 2、创建SparkContext对象 JavaSparkContext sc = new JavaSparkContext(sparkConf); sc.setLogLevel("WARN"); // 3、读取测试文件 JavaRDD lineRdd = sc.textFile("/var/spark/test/word.txt"); // 4、行内容进行切分 JavaRDD wordsRdd = lineRdd.flatMap(new FlatMapFunction() { @Override public Iterator call(Object obj) throws Exception { String value = String.valueOf(obj); String[] words = value.split(","); return Arrays.asList(words).iterator(); } }); // 5、切分的单词进行标注 JavaPairRDD wordAndOneRdd = wordsRdd.mapToPair(new PairFunction() { @Override public Tuple2 call(Object obj) throws Exception { //将单词进行标记: return new Tuple2(String.valueOf(obj), 1); } }); // 6、统计单词出现次数 JavaPairRDD wordAndCountRdd = wordAndOneRdd.reduceByKey(new Function2() { @Override public Object call(Object obj1, Object obj2) throws Exception { return Integer.parseInt(obj1.toString()) + Integer.parseInt(obj2.toString()); } }); // 7、排序 JavaPairRDD sortedRdd = wordAndCountRdd.sortByKey(); List<Tuple2> finalResult = sortedRdd.collect(); // 8、结果打印 for (Tuple2 tuple2 : finalResult) { System.out.println(tuple2._1 + " ===> " + tuple2._2); } // 9、保存统计结果 sortedRdd.saveAsTextFile("/var/spark/output"); sc.stop(); return "success" ; }}
打包执行结果:
查看文件输出:
[root@hop01 output]# vim /var/spark/output/part-00000
推荐阅读:GitHub源码和分类管理,持续更新
OLAP引擎:Presto组件跨数据源分析
OLAP引擎:Druid组件进行数据统计分析
OLAP引擎:ClickHouse高性能列式查询