龙空技术网

Python潮流周刊#9:如何在本地部署开源大语言模型?

Python猫 222

前言:

现在各位老铁们对“pythonweekly”大约比较关心,我们都需要了解一些“pythonweekly”的相关知识。那么小编在网上收集了一些有关“pythonweekly””的相关内容,希望姐妹们能喜欢,大家快快来学习一下吧!

你好,我是猫哥。这里每周分享优质的 Python 及通用技术内容,部分为英文,已在小标题注明。(标题取自其中一则分享,不代表全部内容都是该主题,特此声明。)

首发于我的博客:

周刊的投稿通道已开放,请在 Github 项目中提交 issue:

文章&教程本地部署开源大模型的完整教程:LangChain + Streamlit+ Llama (英)

一篇步骤清晰的教程,它使用 LangChain 及 Facebook 开源的 LLaMA 大语言模型搭建了一个基于文档的问答助手,另外使用 Streamlit 构建出一个美观的用户界面。(附一篇中文的翻译文 )

Python Asyncio 协程对象开销成本

一个 Python Asyncio 协程会占用有多少内存呢?文章的测试结论是约 2Kb。另外,文中还测试了以下的问题:每秒可创建多少个裸协程?每秒可处理多少个协程?使用uvloop 后,创建及处理协程任务,能有多少提升?

如何使用 asyncio.Runner 执行多个协程 (英)

asyncio.Runner 是 Python 3.11 中新增的功能,支持在同一事件循环中执行多个协程。文章主要内容:如何使用 asyncio.run() 运行多个协程,如何使用包装方法运行多个协程,以及如何使用 asyncio.Runner 类在同一个事件循环中以自适应甚至有条件的方式执行协程。

不使用锁的并发实现 (英)

在并发编程中,通常需要使用锁,但是不应该滥用锁。这篇文章探讨了如何尽量不依赖锁来实现并发,演示的例子是生成短链接,主要的思想是“请求宽恕”而不是“提前检查”、使用 PostgreSQL 数据库提供的功能。

贡献 CPython 日记 (3) CPython 是如何运行的

文章介绍了 CPython 是如何把 Python 代码跑起来的,主要过程:词法分析、语法分析、编译到字节码、执行字节码。

Python JIT 编译器 - 即时编译 (英)

文章探讨了 JIT 编译的概念及其优点,并深入分析了主流的 Python JIT 编译器的优缺点(如 PyPy、Numba 和 Cython),介绍了在 Python 中使用 JIT 编译器的最佳实践和准则。

CPython、Pypy、MicroPython、Jython……都是些什么? (英)

当我们说 Python 时,通常指的是官方实现的 CPython,但还有很多的“Python”,比如 Pypy、Jython、MicroPython、Brython、RustPython 等等,还有很多像是新“Python”的东西,比如 Nuitka、WinPython、Psyco、Pyjion 等等。文章解释了相关的概念和工具。

Python APScheduler:感受 AsyncIOScheduler 的强大 (英)

APScheduler 是一个调度和自动化任务工具,它的 AsyncIOScheduler 支持调度异步函数和协程,文章介绍了它的功能、优点以及如何优化异步任务调度需求。

在生成代码时避免产生技术债务 (英)

GPT 和其它大语言模型可以快速生成大量代码,但这也可能导致很多的混乱代码。文章探讨了如何改进这些工具生成的代码,并将其融入到项目中的几种方法,包括采用专家角色、提供示例、遵循最佳实践、遵循标准和明确指南以及代码放置的恰当位置等。

当 NumPy 太慢时 (英)

在不考虑并行处理的情况下,如何提升 Numpy 性能?NumPy 有三个固有瓶颈(急切执行、通用编译代码和向量化导致的高内存使用率)。针对这些瓶颈,文章介绍四种解决方案:手动优化代码、使用 JAX 作即时编译、使用 Numba 作即时编译,以及使用提前编译。

Numba 教程:使用 JIT 编译加速 Python 代码 (英)

Numba 是一个专用的即时编译器,通过将 Python 代码编译为高效的机器代码来消除解释执行的开销,从而提升性能。文章介绍了 Numba 的功能、内部原理、主要用法和常见问题。

自动化提升 Python 代码质量 (英)

如何使用较少的时间和精力来提升代码的质量?文章介绍了一些提升代码质量的工具(flake8、Black、isort、mypy、bandit等),以及使用 IDE、CI 和 pre-commit 等方式自动化调用这些工具。

使用 PandasAI 增强数据分析 (英)

PandasAI 是最近火爆的库,为 Pandas 集成了 AI 对话功能,可简化数据操作。文章介绍了 PandasAI 作复杂查询与图表可视化的方法,以及介绍了它提供的十几个方便好用的函数。

写单元测试的最佳实践 (英)

单元测试的好处无须赘述,但是写单测却是开发者最讨厌的事情之一。文章罗列了 10 条写单元测试的最佳实践,介绍了手工写单元测试的步骤,最后介绍了使用 Codium.AI 自动化编写测试的方法。

Netflix 如何安全地迁移到 GraphQL (英)

Netflix 官方的一篇博客,介绍了在将手机 APP 安全地从 Falcor 迁移到 GraphQL 的过程中,所采用的三种测试策略:AB 测试、Replay 测试和 Sticky Canaries。AB 测试用于评估新功能对客户的影响,Replay 测试用于验证迁移的正确性,Sticky Canaries 用于验证性能和业务指标。

Python潮流周刊已免费发布了 9 期,访问下方链接,即可查看全部内容:

️项目&资源PyGWalker:将 pandas 数据转换为 Tableau 样式的可视化界面 (中英)

一个在 Jupyter Notebook 环境中运行的可视化探索式分析工具,仅一条命令即可生成一个可交互的图形界面,以类似 Tableau/PowerBI 的方式,通过拖拽字段进行数据分析。(star 6.5K)

jnumpy:快速用 Julia 编写 Python C 扩展 (英)

用 Julia 为 Python 写高性能的 C 扩展,提速约 200x。(@xgdgsc 投稿)

jupyter-ai:JupyterLab 的生成式 AI 扩展 (英)

JupyterLab 官方提供的生成式 AI 扩展,主要提供了:%%ai 指令、原生的聊天 UI 页面、支持大量平台的大语言模型(AI21、Anthropic、Cohere、Hugging Face、OpenAI、SageMaker 等)。

broadcast-service: 一个强大的 Python 发布订阅者框架

一个发布订阅者框架,支持同步异步调度、定时任务、主题管理、发布订阅者回调等功能。(@Zeeland 投稿)

cushy-storage: 一个基于磁盘缓存的 ORM 框架

一个基于磁盘缓存的 ORM 框架,可对基本数据类型及自定义的数据通过 ORM 进行增删改查,支持多种序列化操作和数据压缩方式。(@Zeeland 投稿)

giskard:专用于 ML 模型的测试框架 (英)

如何测试机器学习模型、要涵盖哪些问题、如何实施测试?这个框架可扫描数十种漏洞(性能偏差、数据泄漏、不鲁棒性、虚假关联、过度自信、信心不足、不道德问题等),并基于结果生成特定领域的测试套件。(star 1K)

DragGAN:基于点的交互式图像编辑 (英)

本周最火项目,可在图像上通过拖动点的方式,生成想要的新图像,非常惊艳!(star 28K)

plumbum: 永远不要再写 shell 脚本 (英)

除了类似 shell 的语法和方便的快捷方式外,这个库还提供了本地和远程命令执行(通过 SSH)、本地和远程文件系统路径、简单的目录和环境操作、以及一个可编程的 CLI 工具包。(star 2.6K)

threestudio:用于生成 3D 内容的统一框架 (英)

支持用文本提示、单个图像和少量镜头图像创建 3D 内容。支持多种模型,如 ProlificDreamer、DreamFusion、Magic3D、Score Jacobian Chaining,等等。(star 1.8K)

rembg:一个删除图像背景的工具 (英)

支持删除图像的背景,支持多种使用方式(cli、库、docker)和多种强大的功能。(star 10.5K)

关于周刊

Python 潮流周刊,由豌豆花下猫主理,精心筛选国内外的 250+ 信息源,为你挑选最值得分享的文章、教程、开源项目、软件工具、播客和视频、热门话题等内容。愿景:帮助所有读者精进 Python 技术,并增长职业和副业的收入。

内容创作要花费大量的时间和精力,如果你觉得有帮助,请随意赞赏、买杯咖啡或在爱发电进行支持!如果你喜欢本周刊,请转发分享给其他需要的同学,让更多人可以从中受益~

标签: #pythonweekly