龙空技术网

Java 8 中的 Streams API 详解

软件架构 664

前言:

现在看官们对“sajaxsource数据处理”都比较关注,你们都想要了解一些“sajaxsource数据处理”的相关知识。那么小编在网上网罗了一些关于“sajaxsource数据处理””的相关资讯,希望同学们能喜欢,咱们快快来学习一下吧!

为什么需要 Stream

Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念。

Java 8 中的 Stream 是对集合(Collection)对象功能的增强,它专注于对集合对象进行各种非常便利、高效的聚合操作(aggregate operation),或者大批量数据操作 (bulk data operation)。Stream API 借助于同样新出现的 Lambda 表达式,极大的提高编程效率和程序可读性。同时它提供串行和并行两种模式进行汇聚操作,并发模式能够充分利用多核处理器的优势,使用 fork/join 并行方式来拆分任务和加速处理过程。通常编写并行代码很难而且容易出错, 但使用 Stream API 无需编写一行多线程的代码,就可以很方便地写出高性能的并发程序。所以说,Java 8 中首次出现的 java.util.stream 是一个函数式语言+多核时代综合影响的产物。

什么是流

Stream 不是集合元素,它不是数据结构并不保存数据,它是有关算法和计算的,它更像一个高级版本的 Iterator。原始版本的 Iterator,用户只能显式地一个一个遍历元素并对其执行某些操作;高级版本的 Stream,用户只要给出需要对其包含的元素执行什么操作,比如 “过滤掉长度大于 10 的字符串”、“获取每个字符串的首字母”等,Stream 会隐式地在内部进行遍历,做出相应的数据转换。

Stream 就如同一个迭代器(Iterator),单向,不可往复,数据只能遍历一次,遍历过一次后即用尽了,就好比流水从面前流过,一去不复返。

而和迭代器又不同的是,Stream 可以并行化操作,迭代器只能命令式地、串行化操作。顾名思义,当使用串行方式去遍历时,每个 item 读完后再读下一个 item。而使用并行去遍历时,数据会被分成多个段,其中每一个都在不同的线程中处理,然后将结果一起输出。Stream 的并行操作依赖于 Java7 中引入的 Fork/Join 框架(JSR166y)来拆分任务和加速处理过程。

Stream 的另外一大特点是,数据源本身可以是无限的。

流的构成

当我们使用一个流的时候,通常包括三个基本步骤:

获取一个数据源(source)→ 数据转换→执行操作获取想要的结果,每次转换原有 Stream 对象不改变,返回一个新的 Stream 对象(可以有多次转换),这就允许对其操作可以像链条一样排列,变成一个管道,如下图所示。

流管道 (Stream Pipeline) 的构成

有多种方式生成 Stream Source:

从 Collection 和数组

Collection.stream()Collection.parallelStream()Arrays.stream(T array) or Stream.of()

从 BufferedReader

java.io.BufferedReader.lines()

静态工厂

java.util.stream.IntStream.range()java.nio.file.Files.walk()

自己构建

java.util.Spliterator

其它

Random.ints()BitSet.stream()Pattern.splitAsStream(java.lang.CharSequence)JarFile.stream()流的操作类型分为两种:Intermediate:一个流可以后面跟随零个或多个 intermediate 操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的(lazy),就是说,仅仅调用到这类方法,并没有真正开始流的遍历。Terminal:一个流只能有一个 terminal 操作,当这个操作执行后,流就被使用“光”了,无法再被操作。所以这必定是流的最后一个操作。Terminal 操作的执行,才会真正开始流的遍历,并且会生成一个结果,或者一个 side effect。

在对于一个 Stream 进行多次转换操作 (Intermediate 操作),每次都对 Stream 的每个元素进行转换,而且是执行多次,这样时间复杂度就是 N(转换次数)个 for 循环里把所有操作都做掉的总和吗?其实不是这样的,转换操作都是 lazy 的,多个转换操作只会在 Terminal 操作的时候融合起来,一次循环完成。我们可以这样简单的理解,Stream 里有个操作函数的集合,每次转换操作就是把转换函数放入这个集合中,在 Terminal 操作的时候循环 Stream 对应的集合,然后对每个元素执行所有的函数。

还有一种操作被称为 short-circuiting。用以指:

对于一个 intermediate 操作,如果它接受的是一个无限大(infinite/unbounded)的 Stream,但返回一个有限的新 Stream。对于一个 terminal 操作,如果它接受的是一个无限大的 Stream,但能在有限的时间计算出结果。

当操作一个无限大的 Stream,而又希望在有限时间内完成操作,则在管道内拥有一个 short-circuiting 操作是必要非充分条件。

流的使用详解

简单说,对 Stream 的使用就是实现一个 filter-map-reduce 过程,产生一个最终结果,或者导致一个副作用(side effect)。

流的构造与转换

下面提供最常见的几种构造 Stream 的样例。

// 1. Individual values

Stream stream = Stream.of("a", "b", "c");

// 2. Arrays

String [] strArray = new String[] {"a", "b", "c"};

stream = Stream.of(strArray);

stream = Arrays.stream(strArray);

// 3. Collections

List<String> list = Arrays.asList(strArray);

stream = list.stream();

需要注意的是,对于基本数值型,目前有三种对应的包装类型 Stream:

IntStream、LongStream、DoubleStream。当然我们也可以用 Stream<Integer>、Stream<Long> >、Stream<Double>,但是 boxing 和 unboxing 会很耗时,所以特别为这三种基本数值型提供了对应的 Stream。

Java 8 中还没有提供其它数值型 Stream,因为这将导致扩增的内容较多。而常规的数值型聚合运算可以通过上面三种 Stream 进行。

数值流的构造:

IntStream.of(new int[]{1, 2, 3}).forEach(System.out::println);

IntStream.range(1, 3).forEach(System.out::println);

IntStream.rangeClosed(1, 3).forEach(System.out::println);

流转换为其它数据结构:

// 1. Array

String[] strArray1 = stream.toArray(String[]::new);

// 2. Collection

List<String> list1 = stream.collect(Collectors.toList());

List<String> list2 = stream.collect(Collectors.toCollection(ArrayList::new));

Set set1 = stream.collect(Collectors.toSet());

Stack stack1 = stream.collect(Collectors.toCollection(Stack::new));

// 3. String

String str = stream.collect(Collectors.joining()).toString();

一个 Stream 只可以使用一次,上面的代码为了简洁而重复使用了数次。

流的操作

接下来,当把一个数据结构包装成 Stream 后,就要开始对里面的元素进行各类操作了。常见的操作可以归类如下。

Intermediate:map (mapToInt, flatMap 等)、 filter、 distinct、 sorted、 peek、 limit、 skip、 parallel、 sequential、 unorderedTerminal:forEach、 forEachOrdered、 toArray、 reduce、 collect、 min、 max、 count、 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 iteratorShort-circuiting:anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 limit

标签: #sajaxsource数据处理