龙空技术网

百道Python面试题实现,搞定Python编程就靠它

机器之心Pro 3005

前言:

此刻小伙伴们对“python面试编程”可能比较关注,朋友们都需要分析一些“python面试编程”的相关文章。那么小编也在网上网罗了一些有关“python面试编程””的相关文章,希望兄弟们能喜欢,小伙伴们一起来了解一下吧!

想要备战 Python 面试,这两个项目有千道 Python 问题与实现。

昨天机器之心介绍了 PHD 大牛的求职之路,很多读者感觉这位大牛太厉害了,他的经历对我们帮助不大。对于一般的机器学习求职者而言,最基础的就是掌握 Python 编程技巧,随后才是相关算法或知识点的掌握。在这篇文章中,我们将介绍一个 Python 练习题项目,它从算法练习题到机试实战题提供了众多问题与解决代码。

在春招之前,我们就曾介绍过 GitHub 万星的 ML 算法工程师面试指南,它提供了完整的面试知识点、编程题及题解、各科技公司的面试题锦等内容。读者可查阅该项目了解机器学习面试需要准备哪些知识。

项目地址:

在这个 2W+ 收藏量的 GitHub 项目中,作者前一部分主要介绍了机器学习及各子领域的知识点。其中每一个知识点都只提供最核心的概念,如果读者遇到不熟悉的算法或者遇到知识漏洞,可以进一步阅读相关文献。后一部分则重点介绍了怎样搞定编程面试题,包括各种数据结构和排列组合相关的题目。

一般而言,第一部分的基础知识是长期积累的结果,但对于后面的 Python 面试题,我们可以通过刷题快速提升解题水平。这篇文章重点在于介绍两个 Python 面试题项目,它们提供了大量 Python 问题与解题代码。

面试怎么做

在进入 Python 题海之前,我们还是先要了解了解面试流程。面试形式和过程大致如下:

电话筛选(隐形的现场面试):这个过程一般由 HR 完成,如果是技术人员负责,这个过程一般都很短。技术面试:你将和实际开发人员进行这一轮面试,在这期间他们会深入了解你的知识背景。技术评估/homework 编程/结对编程:一般而言,如果一家公司的面试有结对编程环节,那绝对是加分的。homework 编程也能理解,但绝大多数情况下这都是在浪费每个人的时间,也无法正确评估技术水平。最终面试:和团队其他成员见面,如果这是一家小公司的话,这一轮面试你面对的可能是创始人(们)。发放 offer。

当然,每家公司都会有所不同,这只是你在找工作的过程中可能经历的大致过程。一般技术面试考察的是我们的背景知识,而技术评估则需要语言解决实际问题了。本文的这两个项目,可以让你搞定公司的技术评估,当然其实目前很多书籍与网站都在解决这个问题,例如剑指 Offer 和 LeetCode 等等。

Interview-code-practice-python

首先在第一个项目中,作者给出了 2017 校招真题、剑指 offer、华为机试、机试题和直通 BAT 算法题等各种 Python 实现,它们共计 200 道左右。

项目地址:

如下展示了剑指 offer 文件夹包含的实现文档,每一个问题都是单独的 Python 文件:

整个项目有很多有意思的题目,例如「变态青蛙跳.py」包含的题目与题解代码为:

「合唱团.py」内的代码如下:

The Algorithms - Python

第二个项目是更流行的一个 Python 代码库,它目前有 2.4W+的星。该项目实现的各种算法都是用纯 Python 完成的,它希望更简介地展示这些问题怎样解决,因此相比 Python 标准库中实现的方法可能效率不那么高。

项目地址:

目前该项目展示的解决方案主要有:

排序搜索图数学算法分析二元树数据结构图像处理动态规划线性代数机器学习哈希……

这个项目的算法实现非常多,我们可以根据实际需要选择具体的类别,并查看给出的解决方案。如果我们希望了解排序算法,那么选择排序后我们大概能看到近 30 种不同的排序实现:

其中,在算法入门第一课「bubble_sort.py」中,该项目给出的冒泡排序解决方案为:

该项目提供的实现很多都非常底层,在「Math」中,我们可以了解到如何实现绝对值求解、求最大最小值等等,当然也可以了解到矩阵乘法是如何实现的。该项目其实对面试很有帮助,虽然它并不是直接解决特定的某个问题,但是复现一般的 Python 函数或者基本问题对于理解 Python 很有帮助。

综合以上两个 Python 实现项目,不论是解题技巧,还是对 Python 的理解,我们的实战能力都会有很大的提升。就像理解神经网络最好的方法是用纯 NumPy 实现一遍,理解 Python 的最好方法即过一遍基本函数与结构。有了充足的理解,再看看面试真题或在 LeetCode、牛客网就比较简单了。

标签: #python面试编程 #python编程刷题