龙空技术网

学因式分解头疼?掌握这3个基本步骤就不难拿满分

李状元数学实验学校 355

前言:

现在我们对“整数因式分解的方法与技巧总结”大概比较重视,你们都想要学习一些“整数因式分解的方法与技巧总结”的相关内容。那么小编也在网上汇集了一些有关“整数因式分解的方法与技巧总结””的相关资讯,希望兄弟们能喜欢,大家一起来学习一下吧!

因式分解是初中数学的一个重点,也是不少学生眼中的一个难点。一般难在两个地方:一是不知如何下手;二是分解不彻底等失误。

其实因式分解并不可怕,首先需要明确1个基本方向,即因式分解是要干什么?

因式分解实际上类似于你小学时学的分解质因数,比如30=2×3×5.因式分解最终就是要把原式分解成多个因式相乘的形式,即()()()……这里每个括号表示一个因式,括号内都要化到最简。因式可以是多项式,也可以是单项式,包括单独的数字或字母。

快乐的亚洲小学女生

因式分解实际上是整式乘法的一个逆运算。就像30=2×3×5是2×3×5=30(整数乘法)的逆运算一样。所以在你做分解担心某一步出现失误时,可以把你的分解结果展开看一看是不是与上面的式子相同。

解决了因式分解要干什么的问题,接下来就是怎么做。我们能通过哪些办法从一个整式里分解出因式呢?

有这么三个基本步骤:分组分解、提取公因式、公式/十字交叉法。

当然,这三个步骤不是在任何一道题里都要同时使用的。

一个女孩在粉笔板前学习数学问题a girl studying in front of a chalk

分组分解:

分组分解一般是适用于题目给出的式子项数>3的情况,常见的是4项、5项或6项,3项以内通常就不用分组了。

通常是把这些项分成2组。

对于4项的式子,一般分成1项+3项的两组,或2项+2项两组;

5项的话,通常是2项+3项的两组;

6项的话,比较常见的分成3项+3项的两组。

分组分解是为了分完组后接下来能进行后面两个步骤。

提取公因式:

提取公因式是最好操作的步骤,也是拿到任何一个因式分解题首先要考虑的步骤。

实际上不管给出几项的式子,首先都要看看有没有公因式能提出来。

不过通常对于项数>3的式子,需要先分组分解后才有可能提取公因式。

公式/十字交叉法

这一步是因式分解里的关键步骤,也是难点。需要掌握2个公式和一种类似于公式的方法(十字交叉法)。

其实因式分解能够运用的公式当然不止2个,但在考试范围内只需要掌握平方差公式和完全平方公式就足够了。

平方差公式:a^2 - b^2 = (a+b)(a-b).

完全平方公式:a^2 ± 2ab + b^2 = (a±b)^2.

我们会发现,其实从公式右边做整式乘法运算,就能得到公式左边。要特别注意公式里的符号。

这两个公式一个是2项,一个3项,所以运用起来区分是比较明显的。2项、平方相减就要考虑平方差,3项就先考虑完全平方。

十字交叉法则是完全平方公式的一个升级。(完全平方公式可以看成十字交叉法的一个特殊情况)

这种方法的原理是根据(ax+by)(cx+dy) = acx^2 + (ad+bc)xy + bdy^2这个乘法做逆运算。

acx^2 + (ad+bc)xy + bdy^2 =(ax+by)(cx+dy).

之所以要做十字交叉,是为了简便地从ac、bd、ad+bc这三个系数里找出相应的a、b、c、d四个数。

看着太复杂对吗?如果在上面的式子里令y=1,就得到了只含一个未知数的十字交叉应用:

acx^2 + (ad+bc)x + bd =(ax+b)(cx+d).

如果再令a=c=1,那就是十字交叉法最简单的应用:

x^2 + (d+b)x + bd =(x+b)(x+d).

掌握了这三个步骤并加以综合运用,因式分解题就不用怕啦。

最简单的一些问题,用一步提取公因式就分解完成;复杂一些的,提取公因式之后可以再用公式/十字交叉法。项数更多的,需要先分组,再用提取公因式或公式/十字交叉法。

分解方法会了,为了提高做题时的正确率,下面再总结一下最容易失误的两个方面。

最容易犯的一个失误就是分解不彻底。

要保证分解彻底,就要在分解的每一步都重新审视当前的式子,化简每个括号里的因式,看看能否再用提取公因式或式/十字交叉法继续进行分解,直到每个括号里的因式都分无可分。

举例来说,最容易分解不彻底的是a^4-b^4这种,按平方差分解出的a^2-b^2又可以继续用平方差分解;或者(a^2+b^2)^2-(2ab)^2这种,按平方差分解出的a^2±2ab+b^2又可以继续用完全平方分解。

另一个最容易出现的失误是在提取公因式时的运算失误。要注意2点,一是对于提出一个带负号的公因式,提出后每一项都要相应变符号(这相当于去括号运算的逆运算);二是式子里的某一项就是整个式子的公因式,那提出来之后不要漏掉这一项变成的1.

标签: #整数因式分解的方法与技巧总结 #如何将一个整数因式分解出来 #整数因式分解法则