龙空技术网

MATLAB环境下基于稀疏最大谐波噪声比反卷积的信号处理方法

哥本哈根诠释2023 46

前言:

当前看官们对“matlab波形滤波”都比较关注,朋友们都需要分析一些“matlab波形滤波”的相关资讯。那么小编在网络上收集了一些关于“matlab波形滤波””的相关知识,希望朋友们能喜欢,大家快快来了解一下吧!

状态监测与故障诊断是保障机械设备安全、稳定运行的基础。滚动轴承是旋转机械的核心部件,其服役性能直接影响整台设备的运行安全。在测试的振动信号中,周期性冲击是滚动轴承发生故障的重要标志。因此,如何从振动信号中提取出与故障相关的周期性冲击成分,是实现轴承故障诊断的关键。然而,随着机械设备集成化程度越来越高和运行工况日益复杂化,测试的振动信号的组成成分愈发复杂,噪声和干扰信息带来的影响也日趋严重,使得轴承故障特征更加微弱,特征提取变得十分困难。

谐波噪声比,被定义为信号中谐波成分与噪声成分能量的比值。对于数据序列x,其谐噪比定义为:

为了测试HNR对周期性故障特征的评价性能,计算了严格等间隔分布的周期性冲击信号以及设置0%~20%的随机波动对应信号的HNR值,结果如图2所示。

原始严格周期的信号,其HNR数值为11.58,随着随机波动的增大,信号的周期性逐渐降低,对应的HNR数值也随之下降。由此说明,HNR能够有效、定量地评价故障信号的周期性特征。

鉴于谐波噪声比的优势,提出一种基于稀疏最大谐波噪声比反卷积的信号处理方法,算法程序运行环境为MATLAB R2018a,可用于旋转设备故障诊断,也可用于金融时间序列,地震信号,机械振动信号,语音信号,声信号等一维信号分析。

% 最优滤波频带滤波后的时域波形figureplot(t,hilx);ylabel('Amplitude');xlabel('Time [s]');set(gcf,'pos',pos);% 最优滤波频带滤波后的包络谱figuremyfft(fs,hilx,1);ylabel('Amplitude');xlabel('Frequency [Hz]');set(gcf,'pos',pos);xlim([0 300])

出图如下:

完整代码:

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任

《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

标签: #matlab波形滤波