龙空技术网

技术分享 | 为什么 SELECT 查询选择全表扫描,而不走索引?

爱可生开源社区 1084

前言:

现时看官们对“sql优化如何避免全表扫描”大概比较关注,咱们都想要分析一些“sql优化如何避免全表扫描”的相关知识。那么小编同时在网上网罗了一些有关“sql优化如何避免全表扫描””的相关内容,希望姐妹们能喜欢,小伙伴们快快来学习一下吧!

作者:Charizard

爱可生服务团队成员,主要负责公司数据库运维产品问题诊断;努力在数据库和 IT 领域里摸爬滚打中。

本文来源:原创投稿

*爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源。

1、基本结论

SQL的执行成本(cost)是 MySQL 优化器选择 SQL 执行计划时一个重要考量因素。当优化器认为使用索引的成本高于全表扫描的时候,优化器将会选择全表扫描,而不是使用索引。

下面通过一个实验来说明。

2、问题现象

如下结构的一张表,表中约有104w行数据:

CREATE TABLE `test03` (  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '自增主键',  `dept` tinyint(4) NOT NULL COMMENT '部门id',  `name` varchar(30) COLLATE utf8mb4_bin DEFAULT NULL COMMENT '用户名称',  `create_time` datetime NOT NULL COMMENT '注册时间',  `last_login_time` datetime DEFAULT NULL COMMENT '最后登录时间',  PRIMARY KEY (`id`),  KEY `ct_index` (`create_time`)) ENGINE=InnoDB AUTO_INCREMENT=1048577 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='测试表'

查询1,并未用到ct_index(create_time)索引:

type为ALL,而不是rangerows行数和全表行数接近

# 查询1mysql> explain select * from test03 where create_time > '2021-10-01 02:04:36';+----+-------------+--------+------------+------+---------------+------+---------+------+---------+----------+-------------+| id | select_type | table  | partitions | type | possible_keys | key  | key_len | ref  | rows    | filtered | Extra       |+----+-------------+--------+------------+------+---------------+------+---------+------+---------+----------+-------------+|  1 | SIMPLE      | test03 | NULL       | ALL  | ct_index      | NULL | NULL    | NULL | 1045955 |    50.00 | Using where |+----+-------------+--------+------------+------+---------------+------+---------+------+---------+----------+-------------+1 row in set, 1 warning (0.00 sec)

而查询2,则用到了ct_index(create_time)索引:

# 查询2mysql> explain select * from test03 where create_time < '2021-01-01 02:04:36';+----+-------------+--------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+| id | select_type | table  | partitions | type  | possible_keys | key      | key_len | ref  | rows | filtered | Extra                 |+----+-------------+--------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+|  1 | SIMPLE      | test03 | NULL       | range | ct_index      | ct_index | 5       | NULL |  169 |   100.00 | Using index condition |+----+-------------+--------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+
3、获得SQL优化器处理信息

这里使用optimizer trace工具,观察MySQL对SQL的优化处理过程:

# 调大trace的容量,防止被截断set global optimizer_trace_max_mem_size = 1048576;# 开启optimizer_traceset optimizer_trace="enabled=on";# 执行SQLselect * from test03 where create_time > '2021-10-01 02:04:36';# SQL执行完成之后,查看TRACE select TRACE from INFORMATION_SCHEMA.OPTIMIZER_TRACE\G

获得关于此SQL的详细优化器处理信息:

mysql> select TRACE from INFORMATION_SCHEMA.OPTIMIZER_TRACE\G                                                                                       *************************** 1. row ***************************TRACE: {  "steps": [    {      "join_preparation": {        "select#": 1,        "steps": [          {            "expanded_query": "/* select#1 */ select `test03`.`id` AS `id`,`test03`.`dept` AS `dept`,`test03`.`name` AS `name`,`test03`.`create_time` AS `create_time`,`test03`.`last_login_time` AS `last_login_time` from `test03` where (`test03`.`create_time` > '2021-10-01 02:04:36')"          }        ]      }    },    {      "join_optimization": {        "select#": 1,        "steps": [          {            "condition_processing": {              "condition": "WHERE",              "original_condition": "(`test03`.`create_time` > '2021-10-01 02:04:36')",              "steps": [                {                  "transformation": "equality_propagation",                  "resulting_condition": "(`test03`.`create_time` > '2021-10-01 02:04:36')"                },                {                  "transformation": "constant_propagation",                  "resulting_condition": "(`test03`.`create_time` > '2021-10-01 02:04:36')"                },                {                  "transformation": "trivial_condition_removal",                  "resulting_condition": "(`test03`.`create_time` > '2021-10-01 02:04:36')"                }              ]            }          },          {            "substitute_generated_columns": {            }          },          {            "table_dependencies": [              {                "table": "`test03`",                "row_may_be_null": false,                "map_bit": 0,                "depends_on_map_bits": [                ]              }            ]          },          {            "ref_optimizer_key_uses": [            ]          },          {            "rows_estimation": [              {                "table": "`test03`",                "range_analysis": {                  "table_scan": {                    "rows": 1045955,                    "cost": 212430                  },                  "potential_range_indexes": [                    {                      "index": "PRIMARY",                      "usable": false,                      "cause": "not_applicable"                    },                    {                      "index": "ct_index",                      "usable": true,                      "key_parts": [                        "create_time",                        "id"                      ]                    }                  ],                  "setup_range_conditions": [                  ],                  "group_index_range": {                    "chosen": false,                    "cause": "not_group_by_or_distinct"                  },                  "analyzing_range_alternatives": {                    "range_scan_alternatives": [                      {                        "index": "ct_index",                        "ranges": [                          "0x99aac22124 < create_time"                        ],                        "index_dives_for_eq_ranges": true,                        "rowid_ordered": false,                        "using_mrr": false,                        "index_only": false,                        "rows": 522977,                        "cost": 627573,                        "chosen": false,                        "cause": "cost"                      }                    ],                    "analyzing_roworder_intersect": {                      "usable": false,                      "cause": "too_few_roworder_scans"                    }                  }                }              }            ]          },          {            "considered_execution_plans": [              {                "plan_prefix": [                ],                "table": "`test03`",                "best_access_path": {                  "considered_access_paths": [                    {                      "rows_to_scan": 1045955,                      "access_type": "scan",                      "resulting_rows": 1.05e6,                      "cost": 212428,                      "chosen": true                    }                  ]                },                "condition_filtering_pct": 100,                "rows_for_plan": 1.05e6,                "cost_for_plan": 212428,                "chosen": true              }            ]          },          {            "attaching_conditions_to_tables": {              "original_condition": "(`test03`.`create_time` > '2021-10-01 02:04:36')",              "attached_conditions_computation": [              ],              "attached_conditions_summary": [                {                  "table": "`test03`",                  "attached": "(`test03`.`create_time` > '2021-10-01 02:04:36')"                }              ]            }          },          {            "refine_plan": [              {                "table": "`test03`"              }            ]          }        ]      }    },    {      "join_execution": {        "select#": 1,        "steps": [        ]      }    }  ]}1 row in set (0.00 sec)

通过逐行阅读,发现优化器在join_optimization(SQL优化阶段)部分的rows_estimation内容里:

明确指出了使用索引ct_index(create_time)和全表扫描的成本差异同时指出了未选择索引的原因:cost4、为什么使用索引的成本比全表扫描还高?

通过观察优化器的信息,不难发现,使用索引扫描行数约52w行,而全表扫描约为104w行。为什么优化器反而认为使用索引的成本比全表扫描还高呢?

因为当ct_index(create_time)这个普通索引并不包括查询的所有列,因此需要通过ct_index的索引树找到对应的主键id,然后再到id的索引树进行数据查询,即回表(通过索引查出主键,再去查数据行),这样成本必然上升。尤其是当回表的数据量比较大的时候,经常会出现MySQL优化器认为回表查询代价过高而不选择索引的情况。

这里可以回头看查询1 和 查询2的数据量占比:

查询1的数据量占整个表的60%,回表成本高,因此优化器选择了全表扫描查询2的数据量占整个表的0.02%,因此优化器选择了索引

mysql> select (select count(*) from test03 where create_time > '2021-10-01 02:04:36')/(select count(*) from test03) as '>20211001', (select count(*) from test03 where create_time < '2021-01-01 02:04:36')/(select count(*) from test03) as '<20210101';+-----------+-----------+| >20211001 | <20210101 |+-----------+-----------+|    0.5997 |    0.0002 |+-----------+-----------+1 row in set (0.44 sec)

另外,在MySQL的官方文档中对此也有简要的描述:

当优化器任务全表扫描成本更低的时候,就不会使用索引并没有一个固定的数据量占比来决定优化器是否使用全表扫描(曾经是30%)优化器在选择的时候会考虑更多的因素,如:表大小,行数量,IO块大小等

参考文档:

标签: #sql优化如何避免全表扫描 #数据库索引可以避免全表扫描