前言:
现在各位老铁们对“ubuntu1404kscope”都比较关怀,姐妹们都想要剖析一些“ubuntu1404kscope”的相关内容。那么小编在网上收集了一些有关“ubuntu1404kscope””的相关知识,希望你们能喜欢,朋友们快快来学习一下吧!2020年植物科学领域杰青获得者详细介绍
来源:iPlants
2020年8月11日,国家自然科学基金委公布了2020年国家杰出青年科学基金建议资助项目申请人名单公示(重磅!2020年度国家杰青名单公布!)。
2020年杰青建议资助项目申请人名单
张鹏 中国科学院上海生命科学研究院研究员
教育经历:
1998.9-2002.7 山东大学生物化学与分子生物学系 本科
2002.9-2007.12 中科院生物化学与细胞生物学研究所 博士
工作经历:
2008.2-2010.10 博士后 美国普林斯顿大学分子生物学系
2010.10-现在 研究员 中科院上海生科院植物生理生态研究所
荣誉奖励:
入选上海市 “浦江人才”(2011)
国家基金委优秀青年基金(2013)
上海市首届青年拔尖人才(2015)
研究方向:
研究组利用结构生物学、生物化学及遗传学方法,研究生物体活性小分子代谢物合成、跨膜转运与信号传递的分子机理。
代表性论文(通讯文章):
1. Liu Z.F.#, Li J.X.#, Sun Y.W., Zhang P.*, Wang Y.*. Structural insights into the catalytic mechanism of a plant diterpene glycosyltransferase SrUGT76G1. Plant Communications. 2020 1(1), 100004.
2. Li J.X.#, Yu F. #, Guo H., Xiong R.X., Zhang W.J., He F.Y., Zhang M.H., Zhang P.*. Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Res. 20193. Wang C.C., Sun B., Zhang X., Huang X.W., Zhang M.H., Guo H., Chen X., Huang F., Chen T.Y., Mi H.L., Yu F., Liu L.N., Zhang P.*. Structural mechanism of the active bicarbonate transporter from cyanobacteria. Nature Plants. 2019. 5,1184-1193.4. Li J.X. #, Wang C.Y. # , Yang G.H., Sun Z., Guo H., Shao K., Gu Y., Jiang W.H.*, Zhang P.*. Molecular mechanism of environmental D-xylose perception by a XylFII-LytS complex in bacteria. Proc Natl Acad Sci U S A. 2017. 114(31):8235-8240. 5. Bao Z.H. #, Qi X.F. #, Hong S., Xu K., He F.Y., Zhang M.H., Chen J.G., Chao D.Y., Zhao W., Li D.F., Wang J.W. *, Zhang P.*. Structure and mechanism of a group‐I cobalt energy coupling factor transporter. Cell Res. 2017. 27(5):675-687. 6. Qi X.F., Lin W., Ma M.L., Wang C.Y., He Y., He N.S., Gao J., Zhou H., Xiao Y.L., Wang Y., and Zhang P.*. Structural basis of rifampin inactivation by rifampin phosphotransferase. Proc Natl Acad Sci U S A. 2016. 113(14):3803-3808.7. Wang C. #, Chen Q. #, Fan D., Li J., Wang G.*, and Zhang P.*. Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae plants. Mol Plant. 2016. 9:195–204. (Cover & Highlight)8. Zhao Q. #, Wang C.C. #, Wang C.Y., Guo H., Bao Z.H., Zhang M.H., Zhang P. *. Structures of FolT at substrate-bound and substrate-released conformations reveal a gating mechanism of ECF transporters. Nat Commun. 2015. 6:7661.9. Yu F. #, He F.Y. #, Yao H.Y., Wang C.Y., Wang J.C., Li J.X., Qi X.F., Xue H.W.*, Ding J.P.*, Zhang P.*. Structural basis of intramitochondrial phosphatidic acid transport mediated by Ups1-Mdm35 complex. EMBO Rep. 2015. 16 (7). 813-23. (Recommended by Faculty 1000, Biology)10. Xu K. #, Zhang M.H. #, Zhao Q. #, Yu F. #, Guo H., Wang C.Y., He F.Y., Ding J.P., Zhang P.*. Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature. 2013. 497(7448):268-71.
吴建国 福建农林大学教授
教育经历:
2010年 福建农林大学 博士学位
工作经历:
2010-2016年 北京大学博士后
2016-至今 福建农林大学教授
荣誉奖励:
2017年获国家“优青”项目
中国植物病理学会-青年植物病理学家奖
福建农林大学“金山学者”拔尖人才
研究方向:
1.基于RNA沉默的水稻抗病毒机制;
2.病毒与宿主的相互作用以及病毒对宿主发育的影响;
3.病毒侵染寄主后病害症状的形成机制;
代表性论文(通讯文章):
1.Zhang C, Wei Y, Xu L, et al. A Bunyavirus-Inducible Ubiquitin Ligase Targets RNA Polymerase IV for Degradation during Viral Pathogenesis in Rice. Mol Plant. 2020;13(6):836-850.
2.Zhang C, Chen D, Yang G, Yu X, Wu J. Rice Stripe Mosaic Virus-Encoded P4 Is a Weak Suppressor of Viral RNA Silencing and Is Required for Disease Symptom Development. Mol Plant Microbe Interact. 2020;33(3):412-422.
3. Zhang B, Li W, Zhang J, Wang L, Wu J. Roles of Small RNAs in Virus-Plant Interactions. Viruses. 2019;11(9):827.
4. Yao S, Yang Z, Yang R, et al. Transcriptional Regulation of miR528 by OsSPL9 Orchestrates Antiviral Response in Rice. Mol Plant. 2019;12(8):1114-1122.
5. Lijia Zheng, Chao Zhang, Chaonan Shi, Yu Wang, Tong Zhou, Feng Sun, Hong Wang, Shanshan Zhao, Qingqing Qin, Rui Qiao, Zuomei Ding, Chunhong Wei, Lianhui Xie*, Jianguo Wu*, Yi Li*, Rice stripe virus NS3 protein regulates primary miRNA processing through association with the miRNA biogenesis factor OsDRB1 and facilitates virus infection in rice. PLoS Pathogens, 2017,13(10): e1006662.
6. Chao Zhang#, Zuomei Ding#, Kangcheng Wu#, Liang Yang, Yang Li, Zhen Yang, Shan Shi, Xiaojuan Liu, Shanshan Zhao, Zhirui Yang, Yu Wang, Luping Zheng, Juan Wei, Zhenguo Du, Aihong Zhang, Hongqin Miao, Yi Li, Zujian Wu* and Jianguo Wu*. Suppression of Jasmonic Acid-mediated Defense by Viral-inducible MicroRNA319 Facilitates Virus Infection in Rice. Molecular Plant, 2016,9: 1372-1384. IF: 9.33.
7. Chao Zhang#, Zujian Wu Yi Li and Jianguo Wu*.Biogenesis, Function and Applications of Virus-Derived Small RNAs in Plants.Frontiers in Microbiology, 2015, 6:1237. IF: 4.0.
8. Chao Zhang#, Xiaojuan Liu#, Kangcheng Wu, Luping Zheng, Zuomei Ding, Fei Li, Peng Zou, Liang Yang, Jianguo Wu* and Zujian Wu*. Rice grassy stunt virus nonstructural protein p5 serves as a viral suppressor of RNA silencing and interacts with nonstructural protein p3.Archives of Virology,2015, 160(11): 2769-2779.IF: 2.5.
田丰 中国农业大学教授
教育经历:
2002.9 - 2007.7 中国农业大学 博士
1998.9 - 2002.7 长江大学 学士
工作经历:
2007.8 - 2011.11 康奈尔大学博士后
2011.12 - 今 中国农业大学教授
研究方向:
玉米驯化、适应遗传基础的系统解析玉米重要驯化、适应位点的基因克隆和分子进化机制玉米野生祖先种大刍草优良等位基因的发掘和利用。
代表性论文(通讯文章):爆发!2年中1篇Science,2篇PC,1篇MP,1篇PNAS等7篇高水平文章,中国农大田丰课题组在玉米研究中取得一系列进展!
1. Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W and Tian F* (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 365(6454):658-664
2. Fu Y, Xu G, Chen H, Wang X, Chen Q, Huang C, Li D, Xu D, Tian J, Wu W, Lu S, Li C* and Tian F* (2019) QTL mapping for leaf morphology traits in a large maize-teosinte population. Molecular Breeding, 39(7): 103
3. Xu G, Cao J, Wang X, Chen Q, Jin W, Li Z* and Tian F* (2019) Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte. The Plant Cell, 31(9):1990-2009
4. Liang Y, Liu Q, Wang X, Huang C, Xu G, Hey S, Lin HY, Li C, Xu D, Wu L, Wang C, Wu W, Xia J, Han X, Lai J, Song W*, Schnable PS* and Tian F* (2019) ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytologist, 221: 2335–2347
5. Guo L, Wang X, Zhao M, Huang C, Li C, Li D, Yang CJ, York AM, Xue W, Xu G, Liang Y, Chen Q, Doebley JF and Tian F* (2018) Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering time adaptation. Current Biology,28, 3005–3015
6. Chen Q, Han Y, Liu H, Wang X, Sun J, Zhao B, Li W, Tian J, Liang Y, Yan J, Yang X* and Tian F* (2018) Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize. The Plant Cell, 30(7): 1404-1423
7. Huang C, Sun H, Xu D, Chen Q, Liang Y, Wang X, Xu G, Tian J, Wang C, Li D, Wu L, Yang X, Jin W, Doebley JF* and Tian F* (2018) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA,115:E334-E341
8. Wang X, Chen Q, Wu Y, Lemmon ZH, Xu G, Huang C, Liang Y, Xu D, Li D, Doebley JF and Tian F* (2018) Genome-wide analysis of transcriptional variability in a large maize-teosinte population. Molecular Plant. 11:443–459.
9. Xu D, Wang X, Huang C, Xu G, Liang Y, Chen Q, Wang C, Li D, Tian J, Wu L, Wu Y, Guo L, Wang X, Wu W, Zhang W, Yang X, and Tian F* (2017). Glossy15 plays an important role in the divergence of the vegetative transition between maize and its progenitor, teosinte. Molecular Plant. 10(12):1579-1583.
10. Xu G, Wang X, Huang C, Xu D, Li D, Tian J, Chen Q, Wang C, Liang Y, Wu Y, Yang X and Tian F* (2017) Complex genetic architecture underlies maize tassel domestication. New Phytologist, 214: 852–864
11. Li D, Wang X, Zhang X, Chen Q, Xu G, Xu D, Wang C, Liang Y, Wu L, Huang C, Tian J, Wu Y and Tian F* (2016) The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytologist, 210:256-268
梁振昌 中国科学院植物研究所研究员
教育经历:
2009年,中国科学院植物研究所,博士
工作经历:
2009年-2013年,美国康奈尔大学/农业部葡萄遗传研究中心,博士后
2013年-至今,中科院植物研究所,研究员
荣誉奖励:
获中国科学院科技促进奖1项(排名第3)
研究方向:
探索葡萄果实成熟的调控机制,解析果实品质形成的分子机理,开展葡萄基因组与功能基因组学的系统研究,构建葡萄大数据平台,为葡萄分子辅助/设计育种提供理论依据,同时采用常规育种体系选育高抗优质葡萄新品种。
代表性论文(通讯文章):
1. Zou L, Liu W, Zhang Z, et al. Gene body demethylation increases expression and is associated with self-pruning during grape genome duplication. Hortic Res. 2020;7:84.
2. Xu M, Tong Q, Wang Y, et al. Transcriptomic Analysis of the Grapevine LEA Gene Family in Response to Osmotic and Cold Stress Reveals a Key Role for VamDHN3. Plant Cell Physiol. 2020;61(4):775-786.
3. Ren C, Guo Y, Kong J, et al. Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biol. 2020;20(1):47.
4. Yu Y, Guo D, Li G, et al. The grapevine R2R3-type MYB transcription factor VdMYB1 positively regulates defense responses by activating the stilbene synthase gene 2 (VdSTS2). BMC Plant Biol. 2019;19(1):478.
5. Ren C, Guo Y, Gathunga EK, Duan W, Li S, Liang Z. Recovery of the non-functional EGFP-assisted identification of mutants generated by CRISPR/Cas9. Plant Cell Rep. 2019;38(12):1541-1549.
6. Sun X, Zhang L, Wong DCJ, et al. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance. Plant J. 2019;99(5):988-1002.
7. Liang Z, Duan S, Sheng J, et al. Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses [published correction appears in Nat Commun. 2020 May 6;11(1):2341]. Nat Commun. 2019;10(1):1190. (第一作者)
8. Cheng C, Wang Y, Chai F, Li S, Xin H, Liang Z. Genome-wide identification and characterization of the 14-3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response. BMC Genomics. 2018;19(1):579.
9. Sun X, Matus JT, Wong DCJ, et al. The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides. J Exp Bot. 2018;69(7):1749-1764.
10. Erpeng, Zhang, Fengmei Chai, Haohao Zhang,Shaohua Li, Zhenchang liang*, Peige Fan*.(2017). Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chemistry, V237, P379-389
11. Chong Ren, Zhan Zhang, Yi Wang, Shaohua Li* and Zhenchang Liang*. (2016) .Genome-wide identification and characterization of the NF-Y gene family in grape (Vitis vinifera L.). BMC Genomics 17:605.
12. Yi Wang, Xianju Liu, Chong Ren, Gan-Yuan Zhong, Long Yang, Shaohua Li, Zhenchang Liang. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. BMC Plant Biology. 2016 16: 96
13. Haohao Zhang, Peige Fan, Cuixia Liu, Benhong Wu, Shaohua Li*, Zhenchang Liang*. (2014) Sunlight exclusion from muscat grape alters volatile profiles during berry development. Food Chemistry, 164: 242–250
王毅 中国农业大学教授
教育经历:
1999.09-2003.06,中国农业大学生物学院,学士
2003.09-2008.06,中国农业大学生物学院,博士
工作经历:
2008.06-2011.12,中国农业大学生物学院,讲师
2011.03-2011.12,德国维尔茨堡大学植物研究所,访问学者
2011.12-2016.12,中国农业大学生物学院,副教授
2016.12至今,中国农业大学生物学院,教授
荣誉奖励:
2015年入选北京市“科技新星计划”,
2016年获得国家自然科学基金委“优秀青年科学基金”资助,
2016年入选教育部“长江学者奖励计划”青年学者
研究方向:
主要研究方向是植物钾营养高效的生理及分子遗传机制,以及植物钾离子通道和转运体的分子调控机制。
代表性论文(通讯文章):
1. Qin DB, Liu MY, Yuan L, et al. CALCIUM-DEPENDENT PROTEIN KINASE 32-mediated phosphorylation is essential for the ammonium transport activity of AMT1;1 in Arabidopsis roots. J Exp Bot. 2020;71(16):5087-5097.
2. Du X-Q#, Wang F-L#, Li H, Jing S, Yu M, Li J, Wu W-H, Wang Y* (2019) The transcription factor MYB59 regulates K+/NO3-translocation in the Arabidopsis response to low K+ stress. Plant Cell. 31:699-714.
3. Qin Y-J, Wu W-H, Wang Y* (2019) ZmHAK5 and ZmHAK1 function in K+ uptake and distribution in maize under low K+ conditions. J. Integr. Plant Biol. DOI: 10.1111/jipb.12756.
4. Gao Y-Q, Wu W-H, Wang Y* (2019) Electrophysiological identification and activity analyses of plasma membrane K+ channels in maize guard cells. Plant Cell Physiol. 60:765-777
5. Shi X#, Long Y#, He F, Zhang C, Wang R, Zhang T, Wu W, Hao Z, Wang Y*, Wang GL*, Ning Y* (2018) The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. Plos Pathog. 14(1): e1006878.
6. Gao Y-Q, Wu W-H, Wang Y* (2017) The K+ channel KZM2 is involved in stomatal movement by modulating inward K+ currents in maize guard cells. Plant J. 92:662-675.
7. Li H, Yu M, Du X-Q, Wang Z-F, Wu W-H, Quintero FJ, Jin X-H, Li H-D, Wang Y* (2017) NRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in Arabidopsis. Plant Cell. 29:2016-2026.
8. Behera S#, Long Y#, Schmitz-Thom I, Wang X-P, Zhang C, Li H, Steinhorst L, Manishankar P, Ren X-L, Offenborn JN, Wu W-H, Kudla J*, Wang Y* (2017) Two spatially and temporally distinct Ca2+ signals convey Arabidopsis thaliana responses to K+ deficiency. New Phytol. 213:739-750.
9. Zhao S#, Zhang M-L#, Ma T-L, Wang Y* (2016) Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress. Plant Cell. 28:3005-3019.
10. Wang X-P#, Chen L-M#, Liu W-X, Shen L-K, Wang F-L, Zhou Y, Zhang Z, Wu W-H, Wang Y* (2016) AtKC1 and CIPK23 synergistically modulate AKT1-mediated low potassium stress responses in Arabidopsis. Plant Physiol. 170:2264-2277.
11. Han M#, Wu W#, Wu W-H, Wang Y* (2016) Potassium transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions. Mol. Plant. 9:437-446.
12. Li J#, Long Y#, Qi G-N#, Li J, Xu Z-J, Wu W-H, Wang Y* (2014) The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell. 26:3387-3402.
张小兰 中国农业大学教授
教育经历:
1999年 中国农业大学蔬菜系 学士学位
2002年 中国农业大学蔬菜系 硕士学位
2007年 美国佐治亚大学植物生物系 博士学位
工作经历:
2007-2011年 美国加州理工大学 博士后
2011/03-2012/12 中国农业大学,农学院蔬菜系,副教授
2013/01-今中国农业大学,农学院蔬菜系,教授
荣誉奖励:
2011年入选教育部“新世纪优秀人才支持计划”
研究方向:
1)蔬菜花和果实发育的分子机理;2)黄瓜性别决定的分子机制;3)黄瓜果刺的起始与膨大的基因调控网络
代表性论文(通讯文章):厉害!研究黄瓜的课题组,两年中PC,PNAS等12篇通讯文章,系统总结中国农大张小兰课题组进展
1. Che G, Gu R, Zhao J, et al. Gene regulatory network controlling carpel number variation in cucumber. Development. 2020;147(7):dev184788.
2. Yan S, Ning K, Wang Z, et al. CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biol. 2020;18(3):e3000671.
3. Shen J, Zhang Y, Ge D, et al. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. Proc Natl Acad Sci U S A. 2019;116(34):17105-17114.
4. Wen C, Zhao W, Liu W, et al. CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development. 2019;146(14):dev180166.
5. Zhao J, Jiang L, Che G, et al. A Functional Allele of CsFUL1 Regulates Fruit Length through Repressing CsSUP and Inhibiting Auxin Transport in Cucumber [published correction appears in Plant Cell. 2020 Jun;32(6):2048-2055]. Plant Cell. 2019;31(6):1289-1307.
6. Che G, Zhang X. Molecular basis of cucumber fruit domestication. Curr Opin Plant Biol. 2019;47:38-46.
7. Liu X, Ning K, Che G, et al. CsSPL functions as an adaptor between HD-ZIP III and CsWUS transcription factors regulating anther and ovule development in Cucumis sativus (cucumber). Plant J. 2018;94(3):535-547.
8. Zhao W, Chen Z, Liu X, et al. CsLFY is required for shoot meristem maintenance via interaction with WUSCHEL in cucumber (Cucumis sativus). New Phytol. 2018;218(1):344-356.
9. Sun C, Li Y, Zhao W, et al. Integration of Hormonal and Nutritional Cues Orchestrates Progressive Corolla Opening. Plant Physiol. 2016;171(2):1209-1229.
10. Zhao J, Li Y, Ding L, et al. Phloem transcriptome signatures underpin the physiological differentiation of the pedicel, stalk and fruit of cucumber (Cucumis sativus L.). Plant Cell Physiol. 2016;57(1):19-34.
11. Ding L, Yan S, Jiang L, et al. HANABA TARANU (HAN) Bridges Meristem and Organ Primordia Boundaries through PINHEAD, JAGGED, BLADE-ON-PETIOLE2 and CYTOKININ OXIDASE 3 during Flower Development in Arabidopsis. PLoS Genet. 2015;11(9):e1005479.
郑丙莲 复旦大学研究员
教育经历:
1998.9-2001.7 华中师范大学学士、硕士;
2001.9-2006.3 中科院遗传与发育生物学研究所 博士学位;
工作经历:
2006.4-2012.2年 美国加州大学河滨分校和伯克利分校博士后;
2012年3月-至今 复旦大学生科院研究员/教授。
荣誉奖励:
2013年入选上海市“浦江人才”计划
2014年获国家自然科学基金“优秀青年基金”
2018年获国家自然科学基金“重点项目”的资助。
研究方向:
以拟南芥为研究对象,探索植物小RNA如何产生、如何发挥作用以及在植物生殖发育过程中发挥何种作用。
代表性论文(通讯文章):半年中NC,PNAS,PC各一篇,复旦大学郑丙莲课题组在植物RNA研究领域取得一系列进展!
1. Wu W, Zheng B* (2019). Intercellular delivery of small RNAs in plant gametes. New Phytol.
2. Zhang X#, Zhang Y#, Wang T, Li Z, Cheng J, Ge H, Tang Q , Chen K, Liu L, Lu C, Guo J, Zheng B*, Zheng Y* (2019). A comprehensive map of intron branchpoints and lariat RNAs in plants. Plant Cell.
3. Zhong S, Xu Y, Yu C, Zhang X, Ren G, Wang Y, Ma J, Zheng Y, Zheng B* (2019). Anaphase Promoting Complex/Cyclosome regulates RdDM activity by degrading DMS3 in Arabidopsis. PNAS, 116(9):3899-3908.
4. Zhao Y#, Wang S#, Wu W, Li L, Jiang T, Zheng B* (2018). Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear divisions in Arabidopsis. Nat Commun, 9:5011.
5. Cheng J, Zhang Y, Li Z, Wang T, Zhang X, Zheng B* (2018). A lariat-derived circular RNA is required for plant development in Arabidopsis. Sci China Life Sci 61:204-213.
6. Li L, Wu W, Zhao Y, Zheng B* (2017). A reciprocal inhibition between ARID1 and MET1 in male and female gametes in Arabidopsis. JIPB 59:657-668.
7. Su C, Li Z, Cheng J, Li L, Zhong S, Liu L, Zheng Y., Zheng B* (2017). The protein phosphatase 4 and SMEK1 complex dephosphorylates HYL1 to promote miRNA biogenesis by antagonizing the MAPK cascade in Arabidopsis. Dev Cell 41:527-539.
8. Li Z#, Wang S#, Cheng J, Su C, Zhong S, Liu Q, Fang Y, Yu Y, Lv H, Zheng Y*, and Zheng B* (2016). Intron lariat RNA inhibits microRNA biogenesis by sequestering the dicing complex in Arabidopsis. PLoS Genet, e1006422.
9. Zheng B, He H, Zheng Y, Wu W, and McCormick S* (2014). An ARID Domain-Containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana. PLoS Genet, e41004421.
10. Scarpina R, Sigaut L, Pietrasant L, McCormick S, Zheng B*, and Muschiettia J* (2013). Cajal bodies are developmentally regulated during pollen development and pollen tube growth in Arabidopsis thaliana. Mol Plant 6:1355-1357.
王克剑 中国水稻研究所研究员
教育经历:
2004年 扬州大学获农学 学士学位
2009年 中国科学院遗传与发育生物学研究所 理学博士学位
工作经历:
2009-2011 中国科学院遗传与发育生物学研究所 助理研究员
2012-2013 中国科学院遗传与发育生物学研究所 副研究员
2013年8月-至今 中国水稻研究所 特聘研究员
荣誉奖励:
中国农科院首批“青年英才计划”入选者
研究方向:
主要研究方向为水稻遗传重组机制及应用研究、水稻基因组编辑及应用研究和水稻基因资源挖掘及利用的研究。
代表性论文(通讯文章):【Nature Biotech】一系法杂交水稻要来了?中国农科院王克剑课题组在杂交水稻无融合生殖中取得重要进展!
1. Wang C., Liu Q., Shen Y., Hua Y., Wang J., Lin J., Wu M., Sun T., Cheng Z., Mercier R., Wang K*. (2019) Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology, 37(3):283-287.
2. Wang K. (2019). Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBIOTECH 1, 15-20.
3. Wang J#., Wang C#., Wang K*. (2019) Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. Journal of Genetics and Genomics, 46(1): 61-64.
4. Hu X#., Meng X#., Li J., Wang K*., and Yu H*. (2019) Improving the efficiency of the CRISPR-Cas12a system with tRNA-crRNA arrays. The Crop Journal.
5. Wang J#., Meng X#., Hu X#., Sun T., Li J., Wang K*., Yu H*. (2019) xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnology Journal, 17(4):709-711.
6. Li S#., Shen L#., Hu P., Liu Q., Zhu X., Qian Q., Wang K*., and Wang Y*. (2019) Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. Journal of Integrative Plant Biology, 61(12), 1201-1205.
7. Hu, X#., Meng, X#., Liu, Q., Li, J*., and Wang K*. (2018) Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnology Journal, 16: 292-297.
8. Shen, L#., Wang, C#., Fu, Y., Wang, J., Liu, Q., Zhang, X., Yan, C*., Qian, Q*., and Wang, K*. (2018) QTL editing confers opposing yield performance in different rice varieties. Journal of Integrative Plant Biology, 61: 122-125.
9. Hua, Y#., Wang, C#., Huang, J#., and Wang, K*. (2017) A simple and efficient method for CRISPR/Cas9 mutant screening. Journal of Genetics and Genomics, 44:213.
10. Hu, X#., Wang, C#., Liu, Q., Fu, Y., and Wang, K*. (2017) Targeted mutagenesis in rice using CRISPR-Cpf1 system. Journal of Genetics and Genomics, 44:71-73.
11. Hu, X#., Wang, C#., Fu, Y#., Liu, Q., Jiao, X., and Wang, K*. (2016) Expanding the range of CRISPR/Cas9 genome editing in rice. Molecular Plant, 9:943-945.
12. Wang, K*., Wang, C., Liu, Q., Fu, Y. (2015) Increasing the genetic recombination frequency by partial loss of function of the synaptonemal complex in rice. Molecular Plant, 8:1295-1298.
何新建 北京生命科学研究所研究员
教育经历:
1997 南京师范大学生物系生物学学士学位
2000 南京农业大学农学系作物遗传育种学硕士学位
2004 中科院遗传与发育生物学研究所生化与分子生物学博士学位
工作经历:
2004-2006 美国爱荷华大学生物系博士后
2006-2009 美国加州大学河滨分校植物科学系博士后
2010-2015 北京生命科学研究所研究员
2015-至今 北京生命科学研究所高级研究员
研究方向:
利用模式植物拟南芥为研究材料,通过利用遗传、分子和生化方法重点研究RNA指导的DNA甲基化和组蛋白修饰途径。
代表性论文(通讯文章):【Nat Plants】NIBS何新建组发现植物DNA甲基化动态调控的新机制
1. Ning YQ, Liu N, Lan KK, et al. DREAM complex suppresses DNA methylation maintenance genes and precludes DNA hypermethylation [published online ahead of print, 2020 Jul 13]. Nat Plants. 2020;10.1038/s41477-020-0710-7
2. Zhou HR, Lin RN, Huang HW, et al. The CCR4-NOT complex component NOT1 regulates RNA-directed DNA methylation and transcriptional silencing by facilitating Pol IV-dependent siRNA production [published online ahead of print, 2020 May 15]. Plant J. 2020;10.1111/tpj.14818.
3. Tan LM, Liu R, Gu BW, et al. Dual Recognition of H3K4me3 and DNA by the ISWI Component ARID5 Regulates the Floral Transition in Arabidopsis. Plant Cell. 2020;32(7):2178-2195.
4. Luo YX, Hou XM, Zhang CJ, et al. A plant-specific SWR1 chromatin-remodeling complex couples histone H2A.Z deposition with nucleosome sliding. EMBO J. 2020;39(7):e102008.
5. Ning YQ, Chen Q, Lin RN, Li YQ, Li L, Chen S, He XJ. The HDA19 histone deacetylase complex is involved in the regulation of flowering time in a photoperiod-dependent manner. Plant J. 2019 May;98(3):448-464.
6. Zhang C, Du X, Tang K, Yang Z, Pan L, Zhu P, Luo J, Jiang Y, Zhang H, Wan H, Wang X, Wu F, Tao WA, He XJ, Zhang H, Bressan RA, Du J, Zhu JK. Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Nat Commun. 2018 Oct 31;9(1):4547.
7. Tan LM, Zhang CJ, Hou XM, Shao CR, Lu YJ, Zhou JX, Li YQ, Li L, Chen S, He XJ. The PEAT protein complexes are required for histone deacetylation and heterochromatin silencing. EMBO J. 2018 Oct 1;37(19).
8. Zhang CJ, Hou XM, Tan LM, Shao CR, Huang HW, Li YQ, Li L, Cai T, Chen S, He XJ. The Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing. Nat Commun. 2016 Jun 7;7:11715.
9. Liu ZW, Zhou JX, Huang HW, Li YQ, Shao CR, Li L, Cai T, Chen S, He XJ. Two Components of the RNA-Directed DNA Methylation Pathway Associate with MORC6 and Silence Loci Targeted by MORC6 in Arabidopsis. PLoS Genet. 2016 May 12;12(5):e1006026
10. Han YF, Zhao QY, Dang LL, Luo YX, Chen SS, Shao CR, Huang HW, Li YQ, Li L, Cai T, Chen S, He XJ. The SUMO E3 Ligase-Like Proteins PIAL1 and PIAL2 Interact with MOM1 and Form a Novel Complex Required for Transcriptional Silencing. Plant Cell. 2016 May;28(5):1215-29.
11. Ning YQ, Ma ZY, Huang HW, Mo H, Zhao TT, Li L, Cai T, Chen S, Ma L, He XJ. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res. 2015 Feb 18;43(3):1469-84
12. Han YF, Dou K, Ma ZY, Zhang SW, Huang HW, Li L, Cai T, Chen S, Zhu JK, He XJ. SUVR2 is involved in transcriptional gene silencing by associating with SNF2-related chromatin-remodeling proteins in Arabidopsis. Cell Res. 2014 Dec;24(12):1445-65.
标签: #ubuntu1404kscope