前言:
当前朋友们对“消抖滤波算法实例”大概比较着重,兄弟们都想要学习一些“消抖滤波算法实例”的相关文章。那么小编同时在网上网罗了一些有关“消抖滤波算法实例””的相关文章,希望同学们能喜欢,兄弟们快快来了解一下吧!1、限幅滤波法(又称程序判断滤波法)
2、中位值滤波法
3、算术平均滤波法
4、递推平均滤波法(又称滑动平均滤波法)
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
6、限幅平均滤波法
7、一阶滞后滤波法
8、加权递推平均滤波法
9、消抖滤波法
10、限幅消抖滤波法
程序默认对int类型数据进行滤波,如需要对其他类型进行滤波,只需要把程序中所有int替换成long、float或者double即可。
1) 限幅滤波法(又称程序判断滤波法)
方法:
根据经验判断,确定两次采样允许的最大偏差值(设为A),
每次检测到新值时判断:
如果本次值与上次值之差<=A,则本次值有效, 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。
优点:能有效克服因偶然因素引起的脉冲干扰。
缺点:无法抑制那种周期性的干扰。平滑度差。
int Filter_Value;int Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子Value = 300;}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Value = Filter_Value; // 最近一次有效采样的值,该变量为全局变量Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 限幅滤波法(又称程序判断滤波法)#define FILTER_A 1int Filter() {int NewValue;NewValue = Get_AD();if(((NewValue - Value) > FILTER_A) || ((Value - NewValue) > FILTER_A))return Value;elsereturn NewValue;}
2) 中位值滤波法
方法:
连续采样N次(N取奇数),把N次采样值按大小排列,
取中间值为本次有效值。
优点:
能有效克服因偶然因素引起的波动干扰;
对温度、液位的变化缓慢的被测参数有良好的滤波效果。
缺点:
对流量、速度等快速变化的参数不宜。
int Filter_Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 中位值滤波法#define FILTER_N 101int Filter() {int filter_buf[FILTER_N];int i, j;int filter_temp;for(i = 0; i < FILTER_N; i++) {filter_buf[i] = Get_AD();delay(1);}// 采样值从小到大排列(冒泡法)for(j = 0; j < FILTER_N - 1; j++) {for(i = 0; i < FILTER_N - 1 - j; i++) {if(filter_buf[i] > filter_buf[i + 1]) {filter_temp = filter_buf[i];filter_buf[i] = filter_buf[i + 1];filter_buf[i + 1] = filter_temp;}}}return filter_buf[(FILTER_N - 1) / 2];}
3) 算术平均滤波法
方法:
连续取N个采样值进行算术平均运算:
N值较大时:信号平滑度较高,但灵敏度较低;
N值较小时:信号平滑度较低,但灵敏度较高;
N值的选取:一般流量,N=12;压力:N=4。
优点:
适用于对一般具有随机干扰的信号进行滤波;
这种信号的特点是有一个平均值,信号在某一数值范围附近上下波动。
缺点:
对于测量速度较慢或要求数据计算速度较快的实时控制不适用;
比较浪费RAM。
int Filter_Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 算术平均滤波法#define FILTER_N 12int Filter() {int i;int filter_sum = 0;for(i = 0; i < FILTER_N; i++) {filter_sum += Get_AD();delay(1);}return (int)(filter_sum / FILTER_N);}
4) 递推平均滤波法(又称滑动平均滤波法)
方法:
把连续取得的N个采样值看成一个队列,队列的长度固定为N,
每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则),
把队列中的N个数据进行算术平均运算,获得新的滤波结果。
N值的选取:流量,N=12;压力,N=4;液面,N=4-12;温度,N=1-4。
优点:
对周期性干扰有良好的抑制作用,平滑度高;
适用于高频振荡的系统。
缺点:
灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差;
不易消除由于脉冲干扰所引起的采样值偏差;
不适用于脉冲干扰比较严重的场合;
比较浪费RAM。
int Filter_Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 递推平均滤波法(又称滑动平均滤波法)#define FILTER_N 12int filter_buf[FILTER_N + 1];int Filter() {int i;int filter_sum = 0;filter_buf[FILTER_N] = Get_AD();for(i = 0; i < FILTER_N; i++) {filter_buf[i] = filter_buf[i + 1]; // 所有数据左移,低位仍掉filter_sum += filter_buf[i];}return (int)(filter_sum / FILTER_N);}
5) 中位值平均滤波法(又称防脉冲干扰平均滤波法)
方法:
采一组队列去掉最大值和最小值后取平均值,
相当于“中位值滤波法”+“算术平均滤波法”。
连续采样N个数据,去掉一个最大值和一个最小值,
然后计算N-2个数据的算术平均值。
N值的选取:3-14。
优点:
融合了“中位值滤波法”+“算术平均滤波法”两种滤波法的优点。
对于偶然出现的脉冲性干扰,可消除由其所引起的采样值偏差。
对周期干扰有良好的抑制作用。
平滑度高,适于高频振荡的系统。
缺点:
计算速度较慢,和算术平均滤波法一样。
比较浪费RAM。
int Filter_Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 中位值平均滤波法(又称防脉冲干扰平均滤波法)(算法1)#define FILTER_N 100int Filter() {int i, j;int filter_temp, filter_sum = 0;int filter_buf[FILTER_N];for(i = 0; i < FILTER_N; i++) {filter_buf[i] = Get_AD();delay(1);}// 采样值从小到大排列(冒泡法)for(j = 0; j < FILTER_N - 1; j++) {for(i = 0; i < FILTER_N - 1 - j; i++) {if(filter_buf[i] > filter_buf[i + 1]) {filter_temp = filter_buf[i];filter_buf[i] = filter_buf[i + 1];filter_buf[i + 1] = filter_temp;}}}// 去除最大最小极值后求平均for(i = 1; i < FILTER_N - 1; i++) filter_sum += filter_buf[i];return filter_sum / (FILTER_N - 2);}// 中位值平均滤波法(又称防脉冲干扰平均滤波法)(算法2)/*#define FILTER_N 100int Filter() {int i;int filter_sum = 0;int filter_max, filter_min;int filter_buf[FILTER_N];for(i = 0; i < FILTER_N; i++) {filter_buf[i] = Get_AD();delay(1);}filter_max = filter_buf[0];filter_min = filter_buf[0];filter_sum = filter_buf[0];for(i = FILTER_N - 1; i > 0; i--) {if(filter_buf[i] > filter_max)filter_max=filter_buf[i];else if(filter_buf[i] < filter_min)filter_min=filter_buf[i];filter_sum = filter_sum + filter_buf[i];filter_buf[i] = filter_buf[i - 1];}i = FILTER_N - 2;filter_sum = filter_sum - filter_max - filter_min + i / 2; // +i/2 的目的是为了四舍五入filter_sum = filter_sum / i;return filter_sum;}*/
6) 限幅平均滤波法
方法:
相当于“限幅滤波法”+“递推平均滤波法”;
每次采样到的新数据先进行限幅处理,
再送入队列进行递推平均滤波处理。
优点:
融合了两种滤波法的优点;
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
缺点:
比较浪费RAM。
#define FILTER_N 12int Filter_Value;int filter_buf[FILTER_N];void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子filter_buf[FILTER_N - 2] = 300;}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 限幅平均滤波法#define FILTER_A 1int Filter() {int i;int filter_sum = 0;filter_buf[FILTER_N - 1] = Get_AD();if(((filter_buf[FILTER_N - 1] - filter_buf[FILTER_N - 2]) > FILTER_A) || ((filter_buf[FILTER_N - 2] - filter_buf[FILTER_N - 1]) > FILTER_A))filter_buf[FILTER_N - 1] = filter_buf[FILTER_N - 2];for(i = 0; i < FILTER_N - 1; i++) {filter_buf[i] = filter_buf[i + 1];filter_sum += filter_buf[i];}return (int)filter_sum / (FILTER_N - 1);}
7) 一阶滞后滤波法
方法:
取a=0-1,本次滤波结果=(1-a)*本次采样值+a*上次滤波结果。
优点:
对周期性干扰具有良好的抑制作用;
适用于波动频率较高的场合。
缺点:
相位滞后,灵敏度低;
滞后程度取决于a值大小;
不能消除滤波频率高于采样频率1/2的干扰信号。
int Filter_Value;int Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子Value = 300;}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 一阶滞后滤波法#define FILTER_A 0.01int Filter() {int NewValue;NewValue = Get_AD();Value = (int)((float)NewValue * FILTER_A + (1.0 - FILTER_A) * (float)Value);return Value;}
8) 加权递推平均滤波法
方法:
是对递推平均滤波法的改进,即不同时刻的数据加以不同的权;
通常是,越接近现时刻的数据,权取得越大。
给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。
优点:
适用于有较大纯滞后时间常数的对象,和采样周期较短的系统。
缺点:
对于纯滞后时间常数较小、采样周期较长、变化缓慢的信号;
不能迅速反应系统当前所受干扰的严重程度,滤波效果差。
int Filter_Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 加权递推平均滤波法#define FILTER_N 12int coe[FILTER_N] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; // 加权系数表int sum_coe = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12; // 加权系数和int filter_buf[FILTER_N + 1];int Filter() {int i;int filter_sum = 0;filter_buf[FILTER_N] = Get_AD();for(i = 0; i < FILTER_N; i++) {filter_buf[i] = filter_buf[i + 1]; // 所有数据左移,低位仍掉filter_sum += filter_buf[i] * coe[i];}filter_sum /= sum_coe;return filter_sum;}
9) 消抖滤波法
方法:
设置一个滤波计数器,将每次采样值与当前有效值比较:
如果采样值=当前有效值,则计数器清零;
如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出);
如果计数器溢出,则将本次值替换当前有效值,并清计数器。
优点:
对于变化缓慢的被测参数有较好的滤波效果;
可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。
缺点:
对于快速变化的参数不宜;
如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。
int Filter_Value;int Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子Value = 300;}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 消抖滤波法#define FILTER_N 12int i = 0;int Filter() {int new_value;new_value = Get_AD();if(Value != new_value) {i++;if(i > FILTER_N) {i = 0;Value = new_value;}}elsei = 0;return Value;}
10) 限幅消抖滤波法
方法:
相当于“限幅滤波法”+“消抖滤波法”;
先限幅,后消抖。
优点:
继承了“限幅”和“消抖”的优点;
改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统。
缺点:
对于快速变化的参数不宜。
int Filter_Value;int Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子Value = 300;}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 限幅消抖滤波法#define FILTER_A 1#define FILTER_N 5int i = 0;int Filter() {int NewValue;int new_value;NewValue = Get_AD();if(((NewValue - Value) > FILTER_A) || ((Value - NewValue) > FILTER_A))new_value = Value;elsenew_value = NewValue;if(Value != new_value) {i++;if(i > FILTER_N) {i = 0;Value = new_value;}}elsei = 0;return Value;}
标签: #消抖滤波算法实例 #均值滤波计算是四舍五入吗