龙空技术网

用 Python 可以实现侧脸转正脸?我也要试一下

AI科技大本营 277

前言:

眼前朋友们对“python中reshape”大体比较注重,咱们都需要了解一些“python中reshape”的相关文章。那么小编同时在网摘上网罗了一些对于“python中reshape””的相关文章,希望小伙伴们能喜欢,姐妹们一起来了解一下吧!

作者 | 李秋键

责编 | Carol

封图 | CSDN 下载自视觉中国

近几年来GAN图像生成应用越来越广泛,其中主要得益于GAN 在博弈下不断提高建模能力,最终实现以假乱真的图像生成。GAN 由两个神经网络组成,一个生成器和一个判别器组成,其中生成器试图产生欺骗判别器的真实样本,而判别器试图区分真实样本和生成样本。这种对抗博弈下使得生成器和判别器不断提高性能,在达到纳什平衡后生成器可以实现以假乱真的输出。

其中GAN 在图像生成应用最为突出,当然在计算机视觉中还有许多其他应用,如图像绘画,图像标注,物体检测和语义分割。在自然语言处理中应用 GAN 的研究也是一种增长趋势,如文本建模,对话生成,问答和机器翻译。然而,在 NLP 任务中训练 GAN 更加困难并且需要更多技术,这也使其成为具有挑战性但有趣的研究领域。

而今天我们就将利用CC-GAN训练将侧脸生成正脸的模型,其中迭代20次结果如下:

实验前的准备

首先我们使用的python版本是3.6.5所用到的模块如下:tensorflow用来模型训练和网络层建立;numpy模块用来处理矩阵运算;OpenCV用来读取图片和图像处理;os模块用来读取数据集等本地文件操作。

素材准备

其中准备训练的不同角度人脸图片放入以下文件夹作为训练集,如下图可见:

测试集图片如下可见:

模型搭建

原始GAN(GAN 简介与代码实战)在理论上可以完全逼近真实数据,但它的可控性不强(生成小图片还行,生成的大图片可能是不合逻辑的),因此需要对gan加一些约束,能生成我们想要的图片,这个时候,CGAN就横空出世了。其中CCGAN整体模型结构如下:

1、网络结构参数的搭建:

首先是定义标准化、激活函数和池化层等函数:Batch_Norm是对其进行规整,是为了防止同一个batch间的梯度相互抵消。其将不同batch规整到同一个均值0和方差1。InstanceNorm是将输入在深度方向上减去均值除以标准差,可以加快网络的训练速度。

def instance_norm(x, scope='instance_norm'):

return tf_contrib.layers.instance_norm(x, epsilon=1e-05, center=True, scale=True, scope=scope)

def batch_norm(x, scope='batch_norm'):

return tf_contrib.layers.batch_norm(x, decay=0.9, epsilon=1e-05, center=True, scale=True, scope=scope)

def flatten(x) :

return tf.layers.flatten(x)

def lrelu(x, alpha=0.2):

return tf.nn.leaky_relu(x, alpha)

def relu(x):

return tf.nn.relu(x)

def global_avg_pooling(x):

gap = tf.reduce_mean(x, axis=[1, 2], keepdims=True)

return gap

def resblock(x_init, c, scope='resblock'):

with tf.variable_scope(scope):

with tf.variable_scope('res1'):

x = slim.conv2d(x_init, c, kernel_size=[3,3], stride=1, activation_fn = None)

x = batch_norm(x)

x = relu(x)

with tf.variable_scope('res2'):

x = slim.conv2d(x, c, kernel_size=[3,3], stride=1, activation_fn = None)

x = batch_norm(x)

return x + x_init

然后是卷积层的定义:

def conv(x, c):

x1 = slim.conv2d(x, c, kernel_size=[5,5], stride=2, padding = 'SAME', activation_fn=relu)

# print(x1.shape)

x2 = slim.conv2d(x, c, kernel_size=[3,3], stride=2, padding = 'SAME', activation_fn=relu)

# print(x2.shape)

x3 = slim.conv2d(x, c, kernel_size=[1,1], stride=2, padding = 'SAME', activation_fn=relu)

# print(x3.shape)

out = tf.concat([x1, x2, x3],axis = 3)

out = slim.conv2d(out, c, kernel_size=[1,1], stride=1, padding = 'SAME', activation_fn=None)

# print(out.shape)

return out

生成器函数定义:

def mixgenerator(x_init, c, org_pose, trg_pose): 

reuse = len([t for t in tf.global_variables() if t.name.startswith('generator')]) > 0

with tf.variable_scope('generator', reuse = reuse):

org_pose = tf.cast(tf.reshape(org_pose, shape=[-1, 1, 1, org_pose.shape[-1]]), tf.float32)

print(org_pose.shape)

org_pose = tf.tile(org_pose, [1, x_init.shape[1], x_init.shape[2], 1])

print(org_pose.shape)

x = tf.concat([x_init, org_pose], axis=-1)

print(x.shape)

x = conv(x, c)

x = batch_norm(x, scope='bat_norm_1')

x = relu(x)#64

print('----------------')

print(x.shape)

x = conv(x, c*2)

x = batch_norm(x, scope='bat_norm_2')

x = relu(x)#32

print(x.shape)

x = conv(x, c*4)

x = batch_norm(x, scope='bat_norm_3')

x = relu(x)#16

print(x.shape)

f_org = x

x = conv(x, c*8)

x = batch_norm(x, scope='bat_norm_4')

x = relu(x)#8

print(x.shape)

x = conv(x, c*8)

x = batch_norm(x, scope='bat_norm_5')

x = relu(x)#4

print(x.shape)

for i in range(6):

x = resblock(x, c*8, scope = str(i)+"_resblock")

trg_pose = tf.cast(tf.reshape(trg_pose, shape=[-1, 1, 1, trg_pose.shape[-1]]), tf.float32)

print(trg_pose.shape)

trg_pose = tf.tile(trg_pose, [1, x.shape[1], x.shape[2], 1])

print(trg_pose.shape)

x = tf.concat([x, trg_pose], axis=-1)

print(x.shape)

x = slim.conv2d_transpose(x, c*8, kernel_size=[3, 3], stride=2, activation_fn=None)

x = batch_norm(x, scope='bat_norm_8')

x = relu(x)#8

print(x.shape)

x = slim.conv2d_transpose(x, c*4, kernel_size=[3, 3], stride=2, activation_fn=None)

x = batch_norm(x, scope='bat_norm_9')

x = relu(x)#16

print(x.shape)

f_trg =x

x = slim.conv2d_transpose(x, c*2, kernel_size=[3, 3], stride=2, activation_fn=None)

x = batch_norm(x, scope='bat_norm_10')

x = relu(x)#32

print(x.shape)

x = slim.conv2d_transpose(x, c, kernel_size=[3, 3], stride=2, activation_fn=None)

x = batch_norm(x, scope='bat_norm_11')

x = relu(x)#64

print(x.shape)

z = slim.conv2d_transpose(x, 3 , kernel_size=[3,3], stride=2, activation_fn = tf.nn.tanh)

f = tf.concat([f_org, f_trg], axis=-1)

print(f.shape)

return z, f

下面还有判别器等函数定义,不加赘述。

2、VGG程序设立:

VGG模型网络层的搭建:

def build(self, rgb, include_fc=False):

"""

load variable from npy to build the VGG

input format: bgr image with shape [batch_size, h, w, 3]

scale: (-1, 1)

"""

start_time = time.time

rgb_scaled = (rgb + 1) / 2 # [-1, 1] ~ [0, 1]

# blue, green, red = tf.split(axis=3, num_or_size_splits=3, value=rgb_scaled)

# bgr = tf.concat(axis=3, values=[blue - VGG_MEAN[0],

# green - VGG_MEAN[1],

# red - VGG_MEAN[2]])

self.conv1_1 = self.conv_layer(rgb_scaled, "conv1_1")

self.conv1_2 = self.conv_layer(self.conv1_1, "conv1_2")

self.pool1 = self.max_pool(self.conv1_2, 'pool1')

self.conv2_1 = self.conv_layer(self.pool1, "conv2_1")

self.conv2_2 = self.conv_layer(self.conv2_1, "conv2_2")

self.pool2 = self.max_pool(self.conv2_2, 'pool2')

self.conv3_1 = self.conv_layer(self.pool2, "conv3_1")

self.conv3_2_no_activation = self.no_activation_conv_layer(self.conv3_1, "conv3_2")

self.conv3_2 = self.conv_layer(self.conv3_1, "conv3_2")

self.conv3_3 = self.conv_layer(self.conv3_2, "conv3_3")

self.conv3_4 = self.conv_layer(self.conv3_3, "conv3_4")

self.pool3 = self.max_pool(self.conv3_4, 'pool3')

self.conv4_1 = self.conv_layer(self.pool3, "conv4_1")

self.conv4_2 = self.conv_layer(self.conv4_1, "conv4_2")

self.conv4_3 = self.conv_layer(self.conv4_2, "conv4_3")

self.conv4_4_no_activation = self.no_activation_conv_layer(self.conv4_3, "conv4_4")

self.conv4_4 = self.conv_layer(self.conv4_3, "conv4_4")

self.pool4 = self.max_pool(self.conv4_4, 'pool4')

self.conv5_1 = self.conv_layer(self.pool4, "conv5_1")

self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2")

self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3")

self.conv5_4_no_activation = self.no_activation_conv_layer(self.conv5_3, "conv5_4")

self.conv5_4 = self.conv_layer(self.conv5_3, "conv5_4")

self.pool5 = self.max_pool(self.conv5_4, 'pool5')

if include_fc:

self.fc6 = self.fc_layer(self.pool5, "fc6")

assert self.fc6.get_shape.as_list[1:] == [4096]

self.relu6 = tf.nn.relu(self.fc6)

self.fc7 = self.fc_layer(self.relu6, "fc7")

self.relu7 = tf.nn.relu(self.fc7)

self.fc8 = self.fc_layer(self.relu7, "fc8")

self.prob = tf.nn.softmax(self.fc8, name="prob")

self.data_dict = None

print(("Finished building vgg19: %ds" % (time.time - start_time)))

池化层、卷积层函数的定义:

def avg_pool(self, bottom, name):

return tf.nn.avg_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)

defmax_pool(self, bottom, name):

return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)

defconv_layer(self, bottom, name):

with tf.variable_scope(name):

filt = self.get_conv_filter(name)

conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')

conv_biases = self.get_bias(name)

bias = tf.nn.bias_add(conv, conv_biases)

relu = tf.nn.relu(bias)

return relu

defno_activation_conv_layer(self, bottom, name):

with tf.variable_scope(name):

filt = self.get_conv_filter(name)

conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')

conv_biases = self.get_bias(name)

x = tf.nn.bias_add(conv, conv_biases)

return x

deffc_layer(self, bottom, name):

with tf.variable_scope(name):

shape = bottom.get_shape.as_list

dim = 1

for d in shape[1:]:

dim *= d

x = tf.reshape(bottom, [-1, dim])

weights = self.get_fc_weight(name)

biases = self.get_bias(name)

# Fully connected layer. Note that the '+' operation automatically

# broadcasts the biases.

fc = tf.nn.bias_add(tf.matmul(x, weights), biases)

return fc

defget_conv_filter(self, name):

return tf.constant(self.data_dict[name][0], name="filter")

defget_bias(self, name):

return tf.constant(self.data_dict[name][1], name="biases")

defget_fc_weight(self, name):

return tf.constant(self.data_dict[name][0], name="weights")

模型的训练

设置GPU加速训练,需要配置好CUDA环境,并按照tensorflow-gpu版本。

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

config = tf.ConfigProto

config.gpu_options.allow_growth = True

tf.reset_default_graph

model = Sequential #创建一个神经网络对象

#添加一个卷积层,传入固定宽高三通道的

数据集读取和训练批次的划分:

imagedir = './data/'

img_label_org, label_trg, img = reader.images_list(imagedir)

epoch = 800

batch_size = 10

total_sample_num = len(img_label_org)

if total_sample_num % batch_size == 0:

n_batch = int(total_sample_num / batch_size)

else:

n_batch = int(total_sample_num / batch_size) + 1

输入输出神经元和判别器等初始化:

org_image = tf.placeholder(tf.float32,[None,128,128,3], name='org_image')

trg_image = tf.placeholder(tf.float32,[None,128,128,3], name='trg_image')

org_pose = tf.placeholder(tf.float32,[None,9], name='org_pose')

trg_pose = tf.placeholder(tf.float32,[None,9], name='trg_pose')

gen_trg, feat = model.mixgenerator(org_image, 32, org_pose, trg_pose)

out_trg = model.generator(feat, 32, trg_pose)

#D_ab

D_r, real_logit, real_pose = model.snpixdiscriminator(trg_image)

D_f, fake_logit, fake_pose = model.snpixdiscriminator(gen_trg)

D_f_, fake_logit_, fake_pose_ = model.snpixdiscriminator(out_trg)

# fake or real D_LOSS

loss_pred_r = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real_logit, labels=tf.ones_like(D_r)))

loss_pred_f = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logit_, labels=tf.zeros_like(D_f_)))

loss_d_pred = loss_pred_r + loss_pred_f

#pose loss

loss_d_pose = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=real_pose, labels=trg_pose))

loss_g_pose_ = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=fake_pose_, labels=trg_pose))

loss_g_pose = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=fake_pose, labels=trg_pose))

#G_LOSS

loss_g_pred = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logit_, labels=tf.ones_like(D_f_)))

out_pix_loss = ops.L2_loss(out_trg, trg_image)

out_pre_loss, out_feat_texture = ops.vgg_loss(out_trg, trg_image)

out_loss_texture = ops.texture_loss(out_feat_texture)

out_loss_tv = 0.0002 * tf.reduce_mean(ops.tv_loss(out_trg))

gen_pix_loss = ops.L2_loss(gen_trg, trg_image)

out_g_loss = 100*gen_pix_loss + 100*out_pix_loss + loss_g_pred + out_pre_loss + out_loss_texture + out_loss_tv + loss_g_pose_

gen_g_loss = 100 * gen_pix_loss + loss_g_pose

# d_loss

disc_loss = loss_d_pred + loss_d_pose

out_global_step = tf.Variable(0, trainable=False)

gen_global_step = tf.Variable(0, trainable=False)

disc_global_step = tf.Variable(0, trainable=False)

start_decay_step = 500000

start_learning_rate = 0.0001

decay_steps = 500000

end_learning_rate = 0.0

out_lr = (tf.where(tf.greater_equal(out_global_step, start_decay_step), tf.train.polynomial_decay(start_learning_rate, out_global_step-start_decay_step, decay_steps, end_learning_rate, power=1.0),start_learning_rate))

gen_lr = (tf.where(tf.greater_equal(gen_global_step, start_decay_step), tf.train.polynomial_decay(start_learning_rate, gen_global_step-start_decay_step, decay_steps, end_learning_rate, power=1.0),start_learning_rate))

disc_lr = (tf.where(tf.greater_equal(disc_global_step, start_decay_step), tf.train.polynomial_decay(start_learning_rate, disc_global_step-start_decay_step, decay_steps, end_learning_rate, power=1.0),start_learning_rate))

t_vars = tf.trainable_variables

g_gen_vars = [var for var in t_vars if 'generator' in var.name]

g_out_vars = [var for var in t_vars if 'generator_1' in var.name]

d_vars = [var for var in t_vars if 'discriminator' in var.name]

train_gen = tf.train.AdamOptimizer(gen_lr, beta1=0.5, beta2=0.999).minimize(gen_g_loss, var_list = g_gen_vars, global_step = gen_global_step)

train_out = tf.train.AdamOptimizer(out_lr, beta1=0.5, beta2=0.999).minimize(out_g_loss, var_list = g_out_vars, global_step = out_global_step)

train_disc = tf.train.AdamOptimizer(disc_lr, beta1=0.5, beta2=0.999).minimize(disc_loss, var_list = d_vars, global_step = disc_global_step)

saver = tf.train.Saver(tf.global_variables)

模型训练、图片生成和模型的保存:

with tf.Session(config=config) as sess:

for d in ['/gpu:0']:

with tf.device(d):

ckpt = tf.train.get_checkpoint_state('./models/')

if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):

saver.restore(sess, ckpt.model_checkpoint_path)

print('Import models successful!')

else:

sess.run(tf.global_variables_initializer)

print('Initialize successful!')

for i in range(epoch):

random.shuffle(img_label_org)

random.shuffle(label_trg)

for j in range(n_batch):

if j == n_batch - 1:

n = total_sample_num

else:

n = j * batch_size + batch_size

img_org_output, img_trg_output, label_org_output, label_trg_output, image_name_output = reader.images_read(img_label_org[j*batch_size:n], label_trg[j*batch_size:n], img, imagedir)

feeds = {org_image:img_org_output, trg_image:img_trg_output, org_pose:label_org_output,trg_pose:label_trg_output}

if i < 400:

sess.run(train_disc, feed_dict=feeds)

sess.run(train_gen, feed_dict=feeds)

sess.run(train_out, feed_dict=feeds)

else:

sess.run(train_gen, feed_dict=feeds)

sess.run(train_out, feed_dict=feeds)

if j%10==0:

sess.run(train_disc, feed_dict=feeds)

if j%2==0:

gen_g_loss_,out_g_loss_, disc_loss_, org_image_, gen_trg_, out_trg_, trg_image_ = sess.run([gen_g_loss, out_g_loss, disc_loss, org_image, gen_trg, out_trg, trg_image],feeds)

print("epoch:", i, "iter:", j, "gen_g_loss_:", gen_g_loss_, "out_g_loss_:", out_g_loss_, "loss_disc:", disc_loss_)

for n in range(batch_size):

org_image_output = (org_image_[n] + 1)*127.5

gen_trg_output = (gen_trg_[n] + 1)*127.5

out_trg_output = (out_trg_[n] + 1)*127.5

trg_image_output = (trg_image_[n] + 1)*127.5

temp = np.concatenate([org_image_output, gen_trg_output, out_trg_output, trg_image_output], 1)

cv.imwrite("./record/%d_%d_%d_image.jpg" %(i, j, n), temp)

if i%10==0 or i==epoch-1:

saver.save(sess, './models/wssGAN.ckpt', global_step=gen_global_step)

print("Finish!")

最终运行程序结果如下:

初始训练一次结果:

训练20次结果:

经过对比,可以发现有明显的提升!

源码地址:

提取码:kdxe

作者介绍:

李秋键,CSDN 博客专家,CSDN达人课作者。硕士在读于中国矿业大学,开发有taptap安卓武侠游戏一部,vip视频解析,文意转换工具,写作机器人等项目,发表论文若干,多次高数竞赛获奖等等。

标签: #python中reshape