龙空技术网

5年 Python 功力,总结了 10 个开发技巧

程序员编程分享 315

前言:

现在大家对“pythondemo”都比较注重,看官们都需要知道一些“pythondemo”的相关资讯。那么小编在网上汇集了一些有关“pythondemo””的相关文章,希望兄弟们能喜欢,看官们一起来了解一下吧!

今天给大家分享 10 个我平时整理非常实用的 Python 开发小技巧。

1. 如何在运行状态查看源代码?

查看函数的源代码,我们通常会使用 IDE 来完成。

比如在 PyCharm 中,你可以 Ctrl + 鼠标点击 进入函数的源代码。

那如果没有 IDE 呢?

小编这里准备了一份python学习资料,关注,转发,私信小编“01”即可免费领取!

当我们想使用一个函数时,如何知道这个函数需要接收哪些参数呢?

当我们在使用函数时出现问题的时候,如何通过阅读源代码来排查问题所在呢?

这时候,我们可以使用 inspect 来代替 IDE 帮助你完成这些事

# demo.pyimport inspectdef add(x, y):    return x + yprint("===================")print(inspect.getsource(add))

运行结果如下

$ python demo.py===================def add(x, y):    return x + y
2. 如何关闭异常自动关联上下文?

当你在处理异常时,由于处理不当或者其他问题,再次抛出另一个异常时,往外抛出的异常也会携带原始的异常信息。

就像这样子。

try:    print(1 / 0)except Exception as exc:    raise RuntimeError("Something bad happened")

从输出可以看到两个异常信息

Traceback (most recent call last):  File "demo.py", line 2, in <module>    print(1 / 0)ZeroDivisionError: division by zeroDuring handling of the above exception, another exception occurred:Traceback (most recent call last):  File "demo.py", line 4, in <module>    raise RuntimeError("Something bad happened")RuntimeError: Something bad happened

如果在异常处理程序或 finally 块中引发异常,默认情况下,异常机制会隐式工作会将先前的异常附加为新异常的 __context__ 属性。这就是 Python 默认开启的自动关联异常上下文。

如果你想自己控制这个上下文,可以加个 from 关键字( from 语法会有个限制,就是第二个表达式必须是另一个异常类或实例。),来表明你的新异常是直接由哪个异常引起的。

try:    print(1 / 0)except Exception as exc:    raise RuntimeError("Something bad happened") from exc

输出如下

Traceback (most recent call last):  File "demo.py", line 2, in <module>    print(1 / 0)ZeroDivisionError: division by zeroThe above exception was the direct cause of the following exception:Traceback (most recent call last):  File "demo.py", line 4, in <module>    raise RuntimeError("Something bad happened") from excRuntimeError: Something bad happened

当然,你也可以通过 with_traceback() 方法为异常设置上下文 __context__ 属性,这也能在traceback 更好的显示异常信息。

try:    print(1 / 0)except Exception as exc:    raise RuntimeError("bad thing").with_traceback(exc)

最后,如果我想彻底关闭这个自动关联异常上下文的机制?有什么办法呢?

可以使用 raise...from None ,从下面的例子上看,已经没有了原始异常

$ cat demo.pytry:    print(1 / 0)except Exception as exc:    raise RuntimeError("Something bad happened") from None$$ python demo.pyTraceback (most recent call last):  File "demo.py", line 4, in <module>    raise RuntimeError("Something bad happened") from NoneRuntimeError: Something bad happened(PythonCodingTime)
03. 最快查看包搜索路径的方式

当你使用 import 导入一个包或模块时,Python 会去一些目录下查找,而这些目录是有优先级顺序的,正常人会使用 sys.path 查看。

>>> import sys>>> from pprint import pprint   >>> pprint(sys.path)['', '/usr/local/Python3.7/lib/python37.zip', '/usr/local/Python3.7/lib/python3.7', '/usr/local/Python3.7/lib/python3.7/lib-dynload', '/home/wangbm/.local/lib/python3.7/site-packages', '/usr/local/Python3.7/lib/python3.7/site-packages']>>> 

那有没有更快的方式呢?

我这有一种连 console 模式都不用进入的方法呢?

你可能会想到这种,但这本质上与上面并无区别

[wangbm@localhost ~]$ python -c "print('\n'.join(__import__('sys').path))"/usr/lib/python2.7/site-packages/pip-18.1-py2.7.egg/usr/lib/python2.7/site-packages/redis-3.0.1-py2.7.egg/usr/lib64/python27.zip/usr/lib64/python2.7/usr/lib64/python2.7/plat-linux2/usr/lib64/python2.7/lib-tk/usr/lib64/python2.7/lib-old/usr/lib64/python2.7/lib-dynload/home/wangbm/.local/lib/python2.7/site-packages/usr/lib64/python2.7/site-packages/usr/lib64/python2.7/site-packages/gtk-2.0/usr/lib/python2.7/site-packages

这里我要介绍的是比上面两种都方便的多的方法,一行命令即可解决

[wangbm@localhost ~]$ python3 -m sitesys.path = [    '/home/wangbm',    '/usr/local/Python3.7/lib/python37.zip',    '/usr/local/Python3.7/lib/python3.7',    '/usr/local/Python3.7/lib/python3.7/lib-dynload',    '/home/wangbm/.local/lib/python3.7/site-packages',    '/usr/local/Python3.7/lib/python3.7/site-packages',]USER_BASE: '/home/wangbm/.local' (exists)USER_SITE: '/home/wangbm/.local/lib/python3.7/site-packages' (exists)ENABLE_USER_SITE: True

从输出你可以发现,这个列的路径会比 sys.path 更全,它包含了用户环境的目录。

4. 将嵌套 for 循环写成单行

我们经常会如下这种嵌套的 for 循环代码

list1 = range(1,3)list2 = range(4,6)list3 = range(7,9)for item1 in list1:    for item2 in list2:       for item3 in list3:           print(item1+item2+item3)

这里仅仅是三个 for 循环,在实际编码中,有可能会有更层。

这样的代码,可读性非常的差,很多人不想这么写,可又没有更好的写法。

这里介绍一种我常用的写法,使用 itertools 这个库来实现更优雅易读的代码。

from itertools import productlist1 = range(1,3)list2 = range(4,6)list3 = range(7,9)for item1,item2,item3 in product(list1, list2, list3):    print(item1+item2+item3)

输出如下

$ python demo.py1213131413141415
5. 如何使用 print 输出日志

初学者喜欢使用 print 来调试代码,并记录程序运行过程。

但是 print 只会将内容输出到终端上,不能持久化到日志文件中,并不利于问题的排查。

如果你热衷于使用 print 来调试代码(虽然这并不是最佳做法),记录程序运行过程,那么下面介绍的这个 print 用法,可能会对你有用。

Python 3 中的 print 作为一个函数,由于可以接收更多的参数,所以功能变为更加强大,指定一些参数可以将 print 的内容输出到日志文件中

代码如下:

>>> with open('test.log', mode='w') as f:...     print('hello, python', file=f, flush=True)>>> exit()$ cat test.loghello, python
6. 如何快速计算函数运行时间

计算一个函数的运行时间,你可能会这样子做

import timestart = time.time()# run the functionend = time.time()print(end-start)

你看看你为了计算函数运行时间,写了几行代码了。

有没有一种方法可以更方便的计算这个运行时间呢?

有。

有一个内置模块叫 timeit

使用它,只用一行代码即可

import timeimport timeitdef run_sleep(second):    print(second)    time.sleep(second)# 只用这一行print(timeit.timeit(lambda :run_sleep(2), number=5))

运行结果如下

2222210.020059824
7. 利用自带的缓存机制提高效率

缓存是一种将定量数据加以保存,以备迎合后续获取需求的处理方式,旨在加快数据获取的速度。

数据的生成过程可能需要经过计算,规整,远程获取等操作,如果是同一份数据需要多次使用,每次都重新生成会大大浪费时间。所以,如果将计算或者远程请求等操作获得的数据缓存下来,会加快后续的数据获取需求。

为了实现这个需求,Python 3.2 + 中给我们提供了一个机制,可以很方便的实现,而不需要你去写这样的逻辑代码。

这个机制实现于 functool 模块中的 lru_cache 装饰器。

@functools.lru_cache(maxsize=None, typed=False)

参数解读:

maxsize:最多可以缓存多少个此函数的调用结果,如果为None,则无限制,设置为 2 的幂时,性能最佳typed:若为 True,则不同参数类型的调用将分别缓存。

举个例子

from functools import lru_cache@lru_cache(None)def add(x, y):    print("calculating: %s + %s" % (x, y))    return x + yprint(add(1, 2))print(add(1, 2))print(add(2, 3))

输出如下,可以看到第二次调用并没有真正的执行函数体,而是直接返回缓存里的结果

calculating: 1 + 233calculating: 2 + 35

下面这个是经典的斐波那契数列,当你指定的 n 较大时,会存在大量的重复计算

def fib(n):    if n < 2:        return n    return fib(n - 2) + fib(n - 1)

第六点介绍的 timeit,现在可以用它来测试一下到底可以提高多少的效率。

不使用 lru_cache 的情况下,运行时间 31 秒

import timeitdef fib(n):    if n < 2:        return n    return fib(n - 2) + fib(n - 1)print(timeit.timeit(lambda :fib(40), number=1))# output: 31.2725698948

由于使用了 lru_cache 后,运行速度实在太快了,所以我将 n 值由 30 调到 500,可即使是这样,运行时间也才 0.0004 秒。提高速度非常显著。

import timeitfrom functools import lru_cache@lru_cache(None)def fib(n):    if n < 2:        return n    return fib(n - 2) + fib(n - 1)print(timeit.timeit(lambda :fib(500), number=1))# output: 0.0004921059880871326
8. 在程序退出前执行代码的技巧

使用 atexit 这个内置模块,可以很方便的注册退出函数。

不管你在哪个地方导致程序崩溃,都会执行那些你注册过的函数。

示例如下

如果 clean() 函数有参数,那么你可以不用装饰器,而是直接调用 atexit.register(clean_1, 参数1, 参数2, 参数3='xxx') 。

可能你有其他方法可以处理这种需求,但肯定比上不使用 atexit 来得优雅,来得方便,并且它很容易扩展。

但是使用 atexit 仍然有一些局限性,比如:

如果程序是被你没有处理过的系统信号杀死的,那么注册的函数无法正常执行。如果发生了严重的 Python 内部错误,你注册的函数无法正常执行。如果你手动调用了 os._exit() ,你注册的函数无法正常执行。9. 实现类似 defer 的延迟调用

在 Golang 中有一种延迟调用的机制,关键字是 defer,例如下面的示例

import "fmt"func myfunc() {    fmt.Println("B")}func main() {    defer myfunc()    fmt.Println("A")}

输出如下,myfunc 的调用会在函数返回前一步完成,即使你将 myfunc 的调用写在函数的第一行,这就是延迟调用。

AB

那么在 Python 中否有这种机制呢?

当然也有,只不过并没有 Golang 这种简便。

在 Python 可以使用 上下文管理器 达到这种效果

import contextlibdef callback():    print('B')with contextlib.ExitStack() as stack:    stack.callback(callback)    print('A')

输出如下

AB
10. 如何流式读取数G超大文件

使用 with...open... 可以从一个文件中读取数据,这是所有 Python 开发者都非常熟悉的操作。

但是如果你使用不当,也会带来很大的麻烦。

比如当你使用了 read 函数,其实 Python 会将文件的内容一次性的全部载入内存中,如果文件有 10 个G甚至更多,那么你的电脑就要消耗的内存非常巨大。

# 一次性读取with open("big_file.txt", "r") as fp:    content = fp.read()

对于这个问题,你也许会想到使用 readline 去做一个生成器来逐行返回。

def read_from_file(filename):    with open(filename, "r") as fp:        yield fp.readline()

可如果这个文件内容就一行呢,一行就 10个G,其实你还是会一次性读取全部内容。

最优雅的解决方法是,在使用 read 方法时,指定每次只读取固定大小的内容,比如下面的代码中,每次只读取 8kb 返回。

def read_from_file(filename, block_size = 1024 * 8):    with open(filename, "r") as fp:        while True:            chunk = fp.read(block_size)            if not chunk:                break            yield chunk

上面的代码,功能上已经没有问题了,但是代码看起来代码还是有些臃肿。

借助偏函数 和 iter 函数可以优化一下代码

from functools import partialdef read_from_file(filename, block_size = 1024 * 8):    with open(filename, "r") as fp:        for chunk in iter(partial(fp.read, block_size), ""):            yield chunk

标签: #pythondemo