前言:
此刻小伙伴们对“linuxapacheconfd”都比较关心,姐妹们都需要知道一些“linuxapacheconfd”的相关资讯。那么小编同时在网摘上汇集了一些关于“linuxapacheconfd””的相关资讯,希望小伙伴们能喜欢,姐妹们一起来了解一下吧!目录(脑图)ClickHouse PaaS 云原生多租户平台(Altinity.Cloud)
官网:
PaaS 架构概览
设计一个拥有云原生编排能力、支持多云环境部署、自动化运维、弹性扩缩容、故障自愈等特性,同时提供租户隔离、权限管理、操作审计等企业级能力的高性能、低成本的分布式中间件服务是真挺难的。
SaaS 模式交付给用户Sentry Snuba 事件大数据分析引擎架构概览
Snuba 是一个在 Clickhouse 基础上提供丰富数据模型、快速摄取消费者和查询优化器的服务。以搜索和提供关于 Sentry 事件数据的聚合引擎。
数据完全存储在 Clickhouse 表和物化视图中,它通过输入流(目前只有 Kafka 主题)摄入,可以通过时间点查询或流查询(订阅)进行查询。
文档:
Kubernetes ClickHouse Operator什么是 Kubernetes Operator?
Kubernetes Operator 是一种封装、部署和管理 Kubernetes 应用的方法。我们使用 Kubernetes API(应用编程接口)和 kubectl 工具在 Kubernetes 上部署并管理 Kubernetes 应用。
Altinity Operator for ClickHouse
Altinity:ClickHouse Operator 业界领先开源提供商。
Altinity:GitHub:Youtube:
当然这种多租户隔离的 ClickHouse 中间件 PaaS 云平台,公司或云厂商几乎是不开源的。
RadonDB ClickHouse
云厂商(青云)基于 altinity-clickhouse-operator 定制的。对于快速部署生产集群做了些优化。
Helm + Operator 快速上云 ClickHouse 集群云原生实验环境VKE K8S Cluster,Vultr 托管集群(v1.23.14)Kubesphere v3.3.1 集群可视化管理,全栈的 Kubernetes 容器云 PaaS 解决方案。Longhorn 1.14,Kubernetes 的云原生分布式块存储。部署 clickhouse-operator
这里我们使用 RadonDB 定制的 Operator。
values.operator.yaml 定制如下两个参数:
# operator 监控集群所有 namespace 的 clickhouse 部署watchAllNamespaces: true# 启用 operator 指标监控enablePrometheusMonitor: truehelm 部署 operator:
cd vip-k8s-paas/10-cloud-native-clickhouse# 部署在 kube-systemhelm install clickhouse-operator ./clickhouse-operator -f values.operator.yaml -n kube-systemkubectl -n kube-system get po | grep clickhouse-operator# clickhouse-operator-6457c6dcdd-szgpd 1/1 Running 0 3m33skubectl -n kube-system get svc | grep clickhouse-operator# clickhouse-operator-metrics ClusterIP 10.110.129.244 <none> 8888/TCP 4m18skubectl api-resources | grep clickhouse# clickhouseinstallations chi clickhouse.radondb.com/v1 true ClickHouseInstallation# clickhouseinstallationtemplates chit clickhouse.radondb.com/v1 true ClickHouseInstallationTemplate# clickhouseoperatorconfigurations chopconf clickhouse.radondb.com/v1 true ClickHouseOperatorConfiguration部署 clickhouse-cluster
这里我们使用 RadonDB 定制的 clickhouse-cluster helm charts。
快速部署 2 shards + 2 replicas + 3 zk nodes 的集群。
values.cluster.yaml 定制:
clickhouse: clusterName: snuba-clickhouse-nodes shardscount: 2 replicascount: 2...zookeeper: install: true replicas: 3helm 部署 clickhouse-cluster:
kubectl create ns cloud-clickhousehelm install clickhouse ./clickhouse-cluster -f values.cluster.yaml -n cloud-clickhousekubectl get po -n cloud-clickhouse# chi-clickhouse-snuba-ck-nodes-0-0-0 3/3 Running 5 (6m13s ago) 16m# chi-clickhouse-snuba-ck-nodes-0-1-0 3/3 Running 1 (5m33s ago) 6m23s# chi-clickhouse-snuba-ck-nodes-1-0-0 3/3 Running 1 (4m58s ago) 5m44s# chi-clickhouse-snuba-ck-nodes-1-1-0 3/3 Running 1 (4m28s ago) 5m10s# zk-clickhouse-0 1/1 Running 0 17m# zk-clickhouse-1 1/1 Running 0 17m# zk-clickhouse-2 1/1 Running 0 17m借助 Operator 快速扩展 clickhouse 分片集群使用如下命令,将 shardsCount 改为 3:
kubectl edit chi/clickhouse -n cloud-clickhouse查看 pods:
kubectl get po -n cloud-clickhouse# NAME READY STATUS RESTARTS AGE# chi-clickhouse-snuba-ck-nodes-0-0-0 3/3 Running 5 (24m ago) 34m# chi-clickhouse-snuba-ck-nodes-0-1-0 3/3 Running 1 (23m ago) 24m# chi-clickhouse-snuba-ck-nodes-1-0-0 3/3 Running 1 (22m ago) 23m# chi-clickhouse-snuba-ck-nodes-1-1-0 3/3 Running 1 (22m ago) 23m# chi-clickhouse-snuba-ck-nodes-2-0-0 3/3 Running 1 (108s ago) 2m33s# chi-clickhouse-snuba-ck-nodes-2-1-0 3/3 Running 1 (72s ago) 119s# zk-clickhouse-0 1/1 Running 0 35m# zk-clickhouse-1 1/1 Running 0 35m# zk-clickhouse-2 1/1 Running 0 35m
发现多出 chi-clickhouse-snuba-ck-nodes-2-0-0 与 chi-clickhouse-snuba-ck-nodes-2-1-0。 分片与副本已自动由 Operator 新建。
小试牛刀ReplicatedMergeTree+Distributed+Zookeeper 构建多分片多副本集群连接 clickhouse
我们进入 Pod, 使用原生命令行客户端 clickhouse-client 连接。
kubectl exec -it chi-clickhouse-snuba-ck-nodes-0-0-0 -n cloud-clickhouse -- bashkubectl exec -it chi-clickhouse-snuba-ck-nodes-0-1-0 -n cloud-clickhouse -- bashkubectl exec -it chi-clickhouse-snuba-ck-nodes-1-0-0 -n cloud-clickhouse -- bashkubectl exec -it chi-clickhouse-snuba-ck-nodes-1-1-0 -n cloud-clickhouse -- bashkubectl exec -it chi-clickhouse-snuba-ck-nodes-2-0-0 -n cloud-clickhouse -- bashkubectl exec -it chi-clickhouse-snuba-ck-nodes-2-1-0 -n cloud-clickhouse -- bash
我们直接通过终端分别进入这 6 个 pod。然后进行测试:
clickhouse-client --multiline -u username -h ip --password passowrd# clickhouse-client -m创建分布式数据库查看 system.clusters
select * from system.clusters;
2.创建名为 test 的数据库
create database test on cluster 'snuba-ck-nodes';# 删除:drop database test on cluster 'snuba-ck-nodes';在各个节点查看,都已存在 test 数据库。
show databases;创建本地表(ReplicatedMergeTree)建表语句如下:
在集群中各个节点 test 数据库中创建 t_local 本地表,采用 ReplicatedMergeTree 表引擎,接受两个参数:
zoo_path — zookeeper 中表的路径,针对表同一个分片的不同副本,定义相同路径。'/clickhouse/tables/{shard}/test/t_local'replica_name — zookeeper 中表的副本名称
CREATE TABLE test.t_local on cluster 'snuba-ck-nodes'( EventDate DateTime, CounterID UInt32, UserID UInt32)ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard}/test/t_local', '{replica}')PARTITION BY toYYYYMM(EventDate)ORDER BY (CounterID, EventDate, intHash32(UserID))SAMPLE BY intHash32(UserID);宏(macros)占位符:
建表语句参数包含的宏替换占位符(如:{replica})。会被替换为配置文件里 macros 部分的值。
查看集群中 clickhouse 分片&副本节点 configmap:
kubectl get configmap -n cloud-clickhouse | grep clickhouseNAME DATA AGEchi-clickhouse-common-configd 6 20hchi-clickhouse-common-usersd 6 20hchi-clickhouse-deploy-confd-snuba-ck-nodes-0-0 2 20hchi-clickhouse-deploy-confd-snuba-ck-nodes-0-1 2 20hchi-clickhouse-deploy-confd-snuba-ck-nodes-1-0 2 20hchi-clickhouse-deploy-confd-snuba-ck-nodes-1-1 2 20hchi-clickhouse-deploy-confd-snuba-ck-nodes-2-0 2 19hchi-clickhouse-deploy-confd-snuba-ck-nodes-2-1 2 19h
查看节点配置值:
kubectl describe configmap chi-clickhouse-deploy-confd-snuba-ck-nodes-0-0 -n cloud-clickhouse创建对应的分布式表(Distributed)
CREATE TABLE test.t_dist on cluster 'snuba-ck-nodes'( EventDate DateTime, CounterID UInt32, UserID UInt32)ENGINE = Distributed('snuba-ck-nodes', test, t_local, rand());# drop table test.t_dist on cluster 'snuba-ck-nodes';
这里,Distributed 引擎的所用的四个参数:
cluster - 服务为配置中的集群名(snuba-ck-nodes)database - 远程数据库名(test)table - 远程数据表名(t_local)sharding_key - (可选) 分片key(CounterID/rand())
查看相关表,如:
use test;show tables;# t_dist# t_local
通过分布式表插入几条数据:
# 插入INSERT INTO test.t_dist VALUES ('2022-12-16 00:00:00', 1, 1),('2023-01-01 00:00:00',2, 2),('2023-02-01 00:00:00',3, 3);
任一节点查询数据:
select * from test.t_dist;实战,为 Snuba 引擎提供 ClickHouse PaaS拆解与分析 Sentry Helm Charts
在我们迁移到 Kubernetes Operator 之前,我们先拆解与分析下 sentry-charts 中自带的 clickhouse & zookeeper charts。
非官方 Sentry Helm Charts:
他的 Chart.yaml 如下:
apiVersion: v2appVersion: 22.11.0dependencies:- condition: sourcemaps.enabled name: memcached repository: version: 6.1.5- condition: redis.enabled name: redis repository: version: 16.12.1- condition: kafka.enabled name: kafka repository: version: 16.3.2- condition: clickhouse.enabled name: clickhouse repository: version: 3.2.0- condition: zookeeper.enabled name: zookeeper repository: version: 9.0.0- alias: rabbitmq condition: rabbitmq.enabled name: rabbitmq repository: version: 8.32.2- condition: postgresql.enabled name: postgresql repository: version: 10.16.2- condition: nginx.enabled name: nginx repository: version: 12.0.4description: A Helm chart for Kubernetesmaintainers:- name: sentry-kubernetesname: sentrytype: applicationversion: 17.9.0
这个 sentry-charts 将所有中间件 helm charts 耦合依赖在一起部署,不适合 sentry 微服务 & 中间件集群扩展。更高级的做法是每个中间件拥有定制的 Kubernetes Operator(如:clickhouse-operator ) & 独立的 K8S 集群,形成中间件 PaaS 平台对外提供服务。
这里我们拆分中间件 charts 到独立的 namespace 或单独的集群运维。设计为:
ZooKeeper 命名空间:cloud-zookeeper-paasClickHouse 命名空间:cloud-clickhouse-paas独立部署 ZooKeeper Helm Chart
这里 zookeeper chart 采用的是 bitnami/zookeeper,他的仓库地址如下:
ZooKeeper Operator 会在后续文章专项讨论。创建命名空间:
kubectl create ns cloud-zookeeper-paas简单定制下 values.yaml:
# 暴露下 prometheus 监控所需的服务metrics: containerPort: 9141 enabled: true........service: annotations: {} clusterIP: "" disableBaseClientPort: false externalTrafficPolicy: Cluster extraPorts: [] headless: annotations: {} publishNotReadyAddresses: true loadBalancerIP: "" loadBalancerSourceRanges: [] nodePorts: client: "" tls: "" ports: client: 2181 election: 3888 follower: 2888 tls: 3181 sessionAffinity: None type: ClusterIP
注意:在使用支持外部负载均衡器的云提供商的服务时,需设置 Sevice 的 type 的值为 "LoadBalancer", 将为 Service 提供负载均衡器。来自外部负载均衡器的流量将直接重定向到后端 Pod 上,不过实际它们是如何工作的,这要依赖于云提供商。
helm 部署:
helm install zookeeper ./zookeeper -f values.yaml -n cloud-zookeeper-paas
集群内,可使用 zookeeper.cloud-zookeeper-paas.svc.cluster.local:2181 对外提供服务。
zkCli 连接 ZooKeeper:
export POD_NAME=$(kubectl get pods --namespace cloud-zookeeper-paas -l "app.kubernetes.io/name=zookeeper,app.kubernetes.io/instance=zookeeper,app.kubernetes.io/component=zookeeper" -o jsonpath="{.items[0].metadata.name}")kubectl -n cloud-zookeeper-paas exec -it $POD_NAME -- zkCli.sh# test[zk: localhost:2181(CONNECTED) 0] ls /[zookeeper][zk: localhost:2181(CONNECTED) 1] ls /zookeeper[config, quota][zk: localhost:2181(CONNECTED) 2] quit# 外部访问# kubectl port-forward --namespace cloud-zookeeper-paas svc/zookeeper 2181: & zkCli.sh 127.0.0.1:2181查看 zoo.cfg
kubectl -n cloud-zookeeper-paas exec -it $POD_NAME -- cat /opt/bitnami/zookeeper/conf/zoo.cfg
# The number of milliseconds of each ticktickTime=2000# The number of ticks that the initial# synchronization phase can takeinitLimit=10# The number of ticks that can pass between# sending a request and getting an acknowledgementsyncLimit=5# the directory where the snapshot is stored.# do not use /tmp for storage, /tmp here is just# example sakes.dataDir=/bitnami/zookeeper/data# the port at which the clients will connectclientPort=2181# the maximum number of client connections.# increase this if you need to handle more clientsmaxClientCnxns=60## Be sure to read the maintenance section of the# administrator guide before turning on autopurge.## The number of snapshots to retain in dataDirautopurge.snapRetainCount=3# Purge task interval in hours# Set to "0" to disable auto purge featureautopurge.purgeInterval=0## Metrics Providers## Metrics ExportermetricsProvider.className=org.apache.zookeeper.metrics.prometheus.PrometheusMetricsProvider#metricsProvider.httpHost=0.0.0.0metricsProvider.httpPort=9141metricsProvider.exportJvmInfo=truepreAllocSize=65536snapCount=100000maxCnxns=0reconfigEnabled=falsequorumListenOnAllIPs=false4lw.commands.whitelist=srvr, mntr, ruokmaxSessionTimeout=40000admin.serverPort=8080admin.enableServer=trueserver.1=zookeeper-0.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local:2888:3888;2181server.2=zookeeper-1.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local:2888:3888;2181server.3=zookeeper-2.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local:2888:3888;2181独立部署 ClickHouse Helm Chart
这里 clickhouse chart 采用的是 sentry-kubernetes/charts 自己维护的一个版本:
sentry snuba 目前对于 clickhouse 21.x 等以上版本支持的并不友好,这里的镜像版本是 yandex/clickhouse-server:20.8.19.4。ClickHouse Operator + ClickHouse Keeper 会在后续文章专项讨论。
这个自带的 clickhouse-charts 存在些问题,Service 部分需简单修改下允许配置 "type:LoadBalancer" or "type:NodePort"。
注意:在使用支持外部负载均衡器的云提供商的服务时,需设置 Sevice 的 type 的值为 "LoadBalancer", 将为 Service 提供负载均衡器。来自外部负载均衡器的流量将直接重定向到后端 Pod 上,不过实际它们是如何工作的,这要依赖于云提供商。
创建命名空间:
kubectl create ns cloud-clickhouse-paas简单定制下 values.yaml:
注意上面 zoo.cfg 的 3 个 zookeeper 实例的地址:
server.1=zookeeper-0.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local:2888:3888;2181server.2=zookeeper-1.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local:2888:3888;2181server.3=zookeeper-2.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local:2888:3888;2181
# 修改 zookeeper_serversclickhouse: configmap: zookeeper_servers: config: - hostTemplate: 'zookeeper-0.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local' index: clickhouse port: "2181" - hostTemplate: 'zookeeper-1.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local' index: clickhouse port: "2181" - hostTemplate: 'zookeeper-2.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local' index: clickhouse port: "2181" enabled: true operation_timeout_ms: "10000" session_timeout_ms: "30000"# 暴露下 prometheus 监控所需的服务metrics: enabled: true
当然这里也可以不用 Headless Service,因为是同一个集群的不同 namespace 的内部访问,所以也可简单填入 ClusterIP 类型 Sevice:
# 修改 zookeeper_serversclickhouse: configmap: zookeeper_servers: config: - hostTemplate: 'zookeeper.cloud-zookeeper-paas.svc.cluster.local' index: clickhouse port: "2181" enabled: true operation_timeout_ms: "10000" session_timeout_ms: "30000"# 暴露下 prometheus 监控所需的服务metrics: enabled: truehelm 部署:
helm install clickhouse ./clickhouse -f values.yaml -n cloud-clickhouse-paas连接 clickhouse
kubectl -n cloud-clickhouse-paas exec -it clickhouse-0 -- clickhouse-client --multiline --host="clickhouse-1.clickhouse-headless.cloud-clickhouse-paas"验证集群
show databases;select * from system.clusters;select * from system.zookeeper where path = '/clickhouse';当前 ClickHouse 集群的 ConfigMap
kubectl get configmap -n cloud-clickhouse-paas | grep clickhouse
clickhouse-config 1 28hclickhouse-metrica 1 28hclickhouse-users 1 28hclickhouse-config(config.xml)
<yandex> <path>/var/lib/clickhouse/</path> <tmp_path>/var/lib/clickhouse/tmp/</tmp_path> <user_files_path>/var/lib/clickhouse/user_files/</user_files_path> <format_schema_path>/var/lib/clickhouse/format_schemas/</format_schema_path> <include_from>/etc/clickhouse-server/metrica.d/metrica.xml</include_from> <users_config>users.xml</users_config> <display_name>clickhouse</display_name> <listen_host>0.0.0.0</listen_host> <http_port>8123</http_port> <tcp_port>9000</tcp_port> <interserver_http_port>9009</interserver_http_port> <max_connections>4096</max_connections> <keep_alive_timeout>3</keep_alive_timeout> <max_concurrent_queries>100</max_concurrent_queries> <uncompressed_cache_size>8589934592</uncompressed_cache_size> <mark_cache_size>5368709120</mark_cache_size> <timezone>UTC</timezone> <umask>022</umask> <mlock_executable>false</mlock_executable> <remote_servers incl="clickhouse_remote_servers" optional="true" /> <zookeeper incl="zookeeper-servers" optional="true" /> <macros incl="macros" optional="true" /> <builtin_dictionaries_reload_interval>3600</builtin_dictionaries_reload_interval> <max_session_timeout>3600</max_session_timeout> <default_session_timeout>60</default_session_timeout> <disable_internal_dns_cache>1</disable_internal_dns_cache> <query_log> <database>system</database> <table>query_log</table> <partition_by>toYYYYMM(event_date)</partition_by> <flush_interval_milliseconds>7500</flush_interval_milliseconds> </query_log> <query_thread_log> <database>system</database> <table>query_thread_log</table> <partition_by>toYYYYMM(event_date)</partition_by> <flush_interval_milliseconds>7500</flush_interval_milliseconds> </query_thread_log> <distributed_ddl> <path>/clickhouse/task_queue/ddl</path> </distributed_ddl> <logger> <level>trace</level> <log>/var/log/clickhouse-server/clickhouse-server.log</log> <errorlog>/var/log/clickhouse-server/clickhouse-server.err.log</errorlog> <size>1000M</size> <count>10</count> </logger></yandex>clickhouse-metrica(metrica.xml)
<yandex> <zookeeper-servers> <node index="clickhouse"> <host>zookeeper-0.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local</host> <port>2181</port> </node> <node index="clickhouse"> <host>zookeeper-1.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local</host> <port>2181</port> </node> <node index="clickhouse"> <host>zookeeper-2.zookeeper-headless.cloud-zookeeper-paas.svc.cluster.local</host> <port>2181</port> </node> <session_timeout_ms>30000</session_timeout_ms> <operation_timeout_ms>10000</operation_timeout_ms> <root></root> <identity></identity> </zookeeper-servers> <clickhouse_remote_servers> <clickhouse> <shard> <replica> <internal_replication>true</internal_replication> <host>clickhouse-0.clickhouse-headless.cloud-clickhouse-paas.svc.cluster.local</host> <port>9000</port> <user>default</user> <compression>true</compression> </replica> </shard> <shard> <replica> <internal_replication>true</internal_replication> <host>clickhouse-1.clickhouse-headless.cloud-clickhouse-paas.svc.cluster.local</host> <port>9000</port> <user>default</user> <compression>true</compression> </replica> </shard> <shard> <replica> <internal_replication>true</internal_replication> <host>clickhouse-2.clickhouse-headless.cloud-clickhouse-paas.svc.cluster.local</host> <port>9000</port> <user>default</user> <compression>true</compression> </replica> </shard> </clickhouse> </clickhouse_remote_servers> <macros> <replica from_env="HOSTNAME"></replica> <shard from_env="SHARD"></shard> </macros></yandex>clickhouse-users(users.xml)
<yandex></yandex>Sentry Helm Charts 定制接入 ClickHouse PaaS, 单集群多节点
我们简单修改 values.yml
禁用 sentry-charts 中的 clickHouse & zookeeper
clickhouse: enabled: falsezookeeper: enabled: false修改externalClickhouse
externalClickhouse: database: default host: "clickhouse.cloud-clickhouse-paas.svc.cluster.local" httpPort: 8123 password: "" singleNode: false clusterName: "clickhouse" tcpPort: 9000 username: default
注意:
这里只是简单的集群内部接入 1 个多节点分片集群,而 Snuba 系统的设计是允许你接入多个 ClickHouse 多节点多分片多副本集群,将多个 Schema 分散到不同的集群,从而实现超大规模吞吐。因为是同一个集群的不同 namespace 的内部访问,所以这里简单填入类型为 ClusterIP Sevice 即可。注意这里 singleNode 要设置成 false。因为我们是多节点,同时我们需要提供 clusterName:源码分析:这将用于确定:将运行哪些迁移(仅本地或本地和分布式表)查询中的差异 - 例如是否选择了 _local 或 _dist 表以及确定来使用不同的 ClickHouse Table Engines 等。当然,ClickHouse 本身是一个单独的技术方向,这里就不展开讨论了。部署
helm install sentry ./sentry -f values.yaml -n sentry验证 _local 与 _dist 表以及 system.zookeeper
kubectl -n cloud-clickhouse-paas exec -it clickhouse-0 -- clickhouse-client --multiline --host="clickhouse-1.clickhouse-headless.cloud-clickhouse-paas"show databases;show tables;select * from system.zookeeper where path = '/clickhouse';高级部分 & 超大规模吞吐接入 ClickHouse 多集群/多节点/多分片/多副本的中间件 PaaS
独立部署多套 VKE LoadBlancer+ VKE K8S Cluster + ZooKeeper-Operator + ClickHouse-Operator,分散 Schema 到不同的集群以及多节点分片。
分析 Snuba 系统设计查看测试用例源码,了解系统设计与高阶配置
关于针对 ClickHouse 集群各个分片、副本之间的读写负载均衡、连接池等问题。Snuba 在系统设计、代码层面部分就已经做了充分的考虑以及优化。
关于 ClickHouse Operator 独立的多个云原生编排集群以及 Snuba 系统设计等高级部分会在 VIP 专栏直播课单独讲解。
更多公众号:黑客下午茶,直播分享通知云原生中间件 PaaS 实践:
标签: #linuxapacheconfd