龙空技术网

01.2、择时策略-双均线-最优参数(含源码)

SZeCloud 1216

前言:

今天咱们对“计算最优值”都比较珍视,同学们都想要分析一些“计算最优值”的相关文章。那么小编同时在网摘上收集了一些对于“计算最优值””的相关内容,希望朋友们能喜欢,你们一起来学习一下吧!

调参有啥用?

1、通过尝试不同的参数组合寻找最优组合;

2、也就是说,如果你想要暴富组合,可以通过不断调参,找到暴富因子,如果你想要回撤最小,可以找到稳定增长的参数组合。

3、策略理论应该放在第一,如果策略本身就不行,硬靠调参续命,还不如去买辣条吃。

回测准备

回测标的:btcusdt

回测区间:2019年-至今

回测频度:小时

手续费、滑点:0.050%(交割合约吃单手续费)+0.1%(滑点:指下单的点位和最后成交的点位有差距)

操作方向:只做多,不做空

结论

1、收益率最优参数[10,95](仅针对本次测试组合),综合收益率前十的均线组合,短均线主要集中在[10,15,20,25],长均线主要集中在[75,80,85,90,95,100];

2、收益率最高的参数组合也只是勉强跑赢基准。

代码

友情提示:行情数据自行准备,涉及行情调取代码不展示

1、使用模块

import pandas as pdimport pymssqlimport numpy as npimport datetimeimport talib as taimport matplotlib.pyplot as plt

2、展示格式调整

pd.set_option('expand_frame_repr', False)  # 当列太多时不换行pd.set_option('display.max_rows', 10000)  # 最多显示多少行pd.set_option('display.float_format', lambda x: '%.8f' % x) #为了直观的显示数字,不采用科学计数法#中文plt.rcParams['font.sans-serif']=['SimHei']#负号plt.rcParams['axes.unicode_minus']=False

3、策略函数

def strategy_ma(pdatas,win_short,win_long):    """    pdatas:ohlc 格式数据    win_short:短均线周期    win_long:长均线周期    """    #复制数据,避免在原数据中改动    datas = pdatas.copy()        #计算方法:N日移动平均线=N日收市价之和/N    #长均线计算    datas['lma'] = ta.MA(datas['close'], timeperiod=win_long)    #短均线计算    datas['sma'] = ta.MA(datas['close'], timeperiod=win_short)    datas['flag'] = 0 # 记录买卖信号    datas['pos'] = 0 # 记录持仓信号    pos = 0 # 是否持仓,持多仓:1,不持仓:0,持空仓:-1            #剔除长均线长度之前的空数据和最后一行数据    for i in range(max(1,win_long),datas.shape[0] - 1):                # 当前无仓位,短均线上穿长均线,做多        if (datas.sma[i-1] < datas.lma[i-1]) and (datas.sma[i] > datas.lma[i]) and pos==0:            #买卖信号置为1,表示买入            datas.loc[i,'flag'] = 1            #买卖信号后一个K线开始持仓,标为1            datas.loc[i + 1,'pos'] = 1            pos = 1        # 当前持仓,死叉,平仓         elif (datas.sma[i-1] > datas.lma[i-1]) and (datas.sma[i] < datas.lma[i]) and pos==1:            #买卖信号置为-1,表示卖出            datas.loc[i,'flag'] = -1            #买卖信号后一个K线开始持仓,标为0,如果要做空,标志为-1            datas.loc[i+1 ,'pos'] = 0             pos = 0        # 其他情况,保持之前仓位不变         else:            datas.loc[i+1,'pos'] = datas.loc[i,'pos']    #剔除长均线计算之前的空数据,并重置索引,并将原索引删除    datas = datas.loc[max(0,win_long):,:].reset_index(drop = True)        return datas

4、资金曲线(与上一版本有区别)

# 计算资金曲线def equity_curve(data,win_short,win_long,leverage_rate=1, c_rate=1.5 / 1000, min_margin_rate=0.015):    """    :param df: 原始数据    :param win_short: 短均线周期    :param win_long:长均线周期    :param leverage_rate:  okex交易所最多提供100倍杠杆,leverage_rate可以在(0, 100]区间选择    :param c_rate:  手续费,按照吃单万5,滑点千一计算    :param min_margin_rate:  最低保证金比例    :return:    """                                                                  df = strategy_ma(data,win_short,win_long)    # =====基本参数    init_cash = 100  # 初始资金    min_margin = init_cash * leverage_rate * min_margin_rate  # 最低保证金    # =====根据pos计算资金曲线    # ===计算涨跌幅    df['change'] = df['close'].pct_change(1)  # 根据收盘价计算涨跌幅    df['pct'] = (df['change'].fillna(0) + 1).cumprod() #计算原始收益率    df['buy_at_open_change'] = df['close'] / df['open'] - 1  # 从今天开盘买入,到今天收盘的涨跌幅,开仓时的计算方法    df['sell_next_open_change'] = df['open'].shift(-1) / df['close'] - 1  # 从今天收盘到明天开盘的涨跌幅,正常平仓价差计算    df.at[len(df) - 1, 'sell_next_open_change'] = 0 #最后一根K不处理    # ===选取开仓、平仓条件    condition1 = df['pos'] != 0    condition2 = df['pos'] != df['pos'].shift(1)      open_pos_condition = condition1 & condition2    condition1 = df['pos'] != 0    condition2 = df['pos'] != df['pos'].shift(-1)      close_pos_condition = condition1 & condition2    # ===对每次交易进行分组    df.loc[open_pos_condition, 'start_time'] = df['date']    df['start_time'].fillna(method='ffill', inplace=True)    df.loc[df['pos'] == 0, 'start_time'] = pd.NaT    # ===计算仓位变动    # 开仓时仓位    df.loc[open_pos_condition, 'position'] = init_cash * leverage_rate * (1 + df['buy_at_open_change'])    # 开仓后每天的仓位的变动    group_num = len(df.groupby('start_time'))    if group_num > 1:        #对时间进行分组,与sql不同,其他字段都会依据时间进行分组        #建仓后的仓位,剔除了开仓        t = df.groupby('start_time').apply(            lambda x: x['close'] / x.iloc[0]['close'] * x.iloc[0]['position']        )        t = t.reset_index(level=[0])        df['position'] = t['close']            elif group_num == 1:        #按照时间进行分组,但是最后只取其中的收盘跟仓位字段        t = df.groupby('start_time')[['close', 'position']].apply(            lambda x: x['close'] / x.iloc[0]['close'] * x.iloc[0]['position'])        df['position'] = t.T.iloc[:, 0]            # 每根K线仓位的最大值和最小值,针对最高价和最低价    df['position_max'] = df['position'] * df['high'] / df['close']    df['position_min'] = df['position'] * df['low'] / df['close']    # 平仓时仓位    df.loc[close_pos_condition, 'position'] *= (1 + df.loc[close_pos_condition, 'sell_next_open_change'])    # ===计算每天实际持有资金的变化    # 计算持仓利润    df['profit'] = (df['position'] - init_cash * leverage_rate) * df['pos']  # 持仓盈利或者损失    # 计算持仓利润最小值    df.loc[df['pos'] == 1, 'profit_min'] = (df['position_min'] - init_cash * leverage_rate) * df[        'pos']  # 最小持仓盈利或者损失    df.loc[df['pos'] == -1, 'profit_min'] = (df['position_max'] - init_cash * leverage_rate) * df[        'pos']  # 最小持仓盈利或者损失    # 计算实际资金量    df['cash'] = init_cash + df['profit']  # 实际资金    df['cash'] -= init_cash * leverage_rate * c_rate  # 减去建仓时的手续费,因为前面计算收益率的时候是没有剔除手续费的,所以每个里面剔除即只剔除了一次    df['cash_min'] = df['cash'] - (df['profit'] - df['profit_min'])  # 实际最小资金    df.loc[df['cash_min'] < 0, 'cash_min'] = 0  # 如果有小于0,直接设置为0    df.loc[close_pos_condition, 'cash'] -= df.loc[close_pos_condition, 'position'] * c_rate  # 减去平仓时的手续费    if len(df[df['cash_min']<= min_margin]['date'].tolist())>0:        print(df[df['cash_min']<= min_margin]['date'].tolist())    # ===判断是否会爆仓    _index = df[df['cash_min'] <= min_margin].index    if len(_index) > 0:        print('有爆仓',len(_index))        df.loc[_index, '强平'] = 1        df['强平'] = df.groupby('start_time')['强平'].fillna(method='ffill')        df.loc[(df['强平'] == 1) & (df['强平'].shift(1) != 1), 'cash_强平'] = df['cash_min']  # 此处是有问题的        df.loc[(df['pos'] != 0) & (df['强平'] == 1), 'cash'] = None        df['cash'].fillna(value=df['cash_强平'], inplace=True)        df['cash'] = df.groupby('start_time')['cash'].fillna(method='ffill')        df.drop(['强平', 'cash_强平'], axis=1, inplace=True)  # 删除不必要的数据    # ===计算资金曲线    df['equity_change'] = df['cash'].pct_change()    df.loc[open_pos_condition, 'equity_change'] = df.loc[open_pos_condition, 'cash'] / init_cash - 1  # 开仓日的收益率    df['equity_change'].fillna(value=0, inplace=True)    df['equity_curve'] = (1 + df['equity_change']).cumprod()    # ===判断资金曲线是否有负值,有的话后面都置成0    if len(df[df['equity_curve'] < 0]) > 0:        neg_start = df[df['equity_curve'] < 0].index[0]        df.loc[neg_start:, 'equity_curve'] = 0    # ===删除不必要的数据    df.drop(['change', 'buy_at_open_change', 'sell_next_open_change', 'position', 'position_max',             'position_min', 'profit', 'profit_min', 'cash', 'cash_min'], axis=1, inplace=True)        #用于参数回测是区分用    df['strategy_return%s%s'%(win_short,win_long)] =df['equity_curve']    #设置时间索引    df.set_index('date',inplace=True)        return df

5、穷举调参

#创建空df,含短均线、长均线、收益率三列single_ids = pd.DataFrame(columns=("win_s","win_l","ret"))#记录参数集合,画图用ret_plot=[]#记录参数、收益率ret_total=pd.DataFrame()#短均线,长均线选择数据范围,同时短均线要小于长均线#短均线选取范围,步长5for i in range(5,30,5):    #长均线选取范围,步长5    for j in range(10,120,5):        #短均线小于长均线        if i <j:            #将参数放到该列表中集中            ret_plot.append('strategy_return%s%s' % (i,j))            #print(ret_plot)            print('i:',i,'j:',j)            #数据回测,考虑手续费(资金曲线调整,与上一版本不同)            result = equity_curve(data,win_short=i,win_long=j)            #获取最新收益率情况,就是最后一条            ret = result['equity_curve'].values[-1]            print(result['equity_curve'].values[-1])            #收益情况传入df中            ret_total['strategy_return%s%s' % (i,j)] = result['strategy_return%s%s' % (i,j)]            #记录短、长均线、收益率结果            jg_dict = {"win_s":i,"win_l":j,"ret":ret}            #转df            jg_dict = pd.DataFrame.from_dict(jg_dict,orient='index')            #单行df需要转置拼接            single_ids = single_ids.append(jg_dict.T)            print(single_ids)
#按照收益率进行降序排列single_ids.sort_values(by=['ret'],ascending=False,inplace=True)#重置索引single_ids.reset_index(inplace=True)
# 取收益率前五的进行数据整合#记录参数集合ret_plot=[]#记录参数、收益率ret_total=pd.DataFrame()#取收益率前5的参数进行拼接for i,j in zip(single_ids[:5]['win_s'],single_ids[:5]['win_l']):        #参数取整操作,不取整数,报错,没有细研究,其他代码同上面        i = int(i)        j = int(j)        ret_plot.append('strategy_return%s%s' % (i,j))        #print(ret_plot)        print('i:',i,'j:',j)        result = equity_curve(data,win_short=i,win_long=j)        ret = result['equity_curve'].values[-1]        print(result['equity_curve'].values[-1])        ret_total['strategy_return%s%s' % (i,j)] = result['strategy_return%s%s' % (i,j)]
#将基准收益率与策略收益率拼接result_total = pd.concat([result.pct,ret_total],axis=1)#去除空行result_total.dropna(inplace=True)

6、画图

#画布大小plt.figure(figsize = (19,8))#result_total[ret_plot].plot  #这种写法画布大小无法修改,暂时没解决,有大佬知道,麻烦留言,谢谢!#不同参数画图result_total.iloc[:,1].plot(lw=0.8)result_total.iloc[:,2].plot(lw=0.8)result_total.iloc[:,3].plot(lw=0.8)result_total.iloc[:,4].plot(lw=0.8)result_total.iloc[:,5].plot(lw=0.8)result_total.pct.plot(c='black',lw=0.8,label='基准')# plt.title('回测效果')#添加网格线plt.grid()#显示标签plt.legend()#画图plt.show()

结尾:文章代码仅做交流学习,切勿直接使用进行投资,所产生盈亏概不负责!

文章首发于公众号(CLOUD打怪升级),喜欢可以关注下!

标签: #计算最优值