龙空技术网

java原子操作,锁基础介绍

Undo 11

前言:

当前大家对“java锁加在方法和代码块”可能比较看重,小伙伴们都需要知道一些“java锁加在方法和代码块”的相关文章。那么小编也在网上汇集了一些对于“java锁加在方法和代码块””的相关内容,希望兄弟们能喜欢,咱们一起来了解一下吧!

java原子操作,锁基础介绍

一 内存模型相关概念

计算机在执行程序时,每条指令都是在CPU中执行的,而执行指令过程中,势必涉及到数据的读取和写入。由于程序运行过程中的临时数据是存放在主存(物理内存)当中的,这时就存在一个问题,由于CPU执行速度很快,而从内存读取数据和向内存写入数据的过程跟CPU执行指令的速度比起来要慢的多,因此如果任何时候对数据的操作都要通过和内存的交互来进行,会大大降低指令执行的速度。因此在CPU里面就有了高速缓存。就是当程序在运行过程中,会将运算需要的数据从主存复制一份到CPU的高速缓存当中,那么CPU进行计算时就可以直接从它的高速缓存读取数据和向其中写入数据,当运算结束之后,再将高速缓存中的数据刷新到主存当中。比如下面的这段代码:

i = i + 1;

当线程执行这个语句时,会先从主存当中读取i的值,然后复制一份到高速缓存当中,然后CPU执行指令对i进行加1操作,然后将数据写入高速缓存,最后将高速缓存中i最新的值刷新到主存当中。

上面这个代码在单线程中运行是没有任何问题的,但是在多线程中运行就会有问题了。比如同时有2个线程执行这段代码,假如初始时i的值为0,希望两个线程执行完之后i的值变为2。

可能存在下面一种情况:初始时,两个线程分别读取i的值存入各自所在的CPU的高速缓存当中,然后线程1进行加1操作,然后把i的最新值1写入到内存。此时线程2的高速缓存当中i的值还是0,进行加1操作之后,i的值为1,然后线程2把i的值写入内存。

最终结果i的值是1,而不是2。这就是缓存一致性问题。通常称这种被多个线程访问的变量为共享变量。

为了解决缓存不一致性问题,通常来说有以下2种解决方法:

1)通过在总线加LOCK#锁的方式

2)通过缓存一致性协议

这2种方式都是硬件层面上提供的方式。

缓存一致性协议。最出名的就是Intel 的MESI协议,MESI协议保证了每个缓存中使用的共享变量的副本是一致的。它核心的思想是:当CPU写数据时,如果发现操作的变量是共享变量,即在其他CPU中也存在该变量的副本,会发出信号通知其他CPU将该变量的缓存行置为无效状态,因此当其他CPU需要读取这个变量时,发现自己缓存中缓存该变量的缓存行是无效的,那么它就会从内存重新读取。

二 并发编程中的三个概念

1.原子性

原子性:即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行

eg: 比如从账户A向账户B转100元,包括2个操作:从账户A减去100元,往账户B加上100元。这个过程中A账户的100被别的线程操作,100变成了10元,最后往B账户加上的是10元。所以这2个操作必须要具备原子性才能保证不出现一些意外的问题。

2.可见性

可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。

比如: //线程1执行 内容

int i=0;

i=10;

//线程2执行内容

j=i;

假若执行线程1的是CPU1,执行线程2的是CPU2。由上面的分析可知,当线程1执行 i =10这句时,会先把i的初始值加载到CPU1的高速缓存中,然后赋值为10,那么在CPU1的高速缓存当中i的值变为10了,却没有立即写入到主存当中。

此时线程2执行 j = i,它会先去主存读取i的值并加载到CPU2的缓存当中,注意此时内存当中i的值还是0,那么就会使得j的值为0,而不是10。

这就是可见性问题,线程1对变量i修改了之后,线程2没有立即看到线程1修改的值。

3.有序性

有序性:即程序执行的顺序按照代码的先后顺序执行。

int i=0;

boolean flag = false;

i=1;//语句1

flag=true;//语句2

定义了一个int型变量,一个boolean类型变量,然后分别对两个变量进行赋值操作。从代码顺序上看,语句1是在语句2前面的,那么JVM在真正执行这段代码的时候会保证语句1不一定会在语句2前面执行,这里可能会发生指令重排序(Instruction Reorder)。

指令重排序: 一般来说,处理器为了提高程序运行效率,可能会对输入代码进行优化,它不保证程序中各个语句的执行先后顺序同代码中的顺序一致,但是它会保证程序最终执行结果和代码顺序执行的结果是一致的。

比如上面的代码中,语句1和语句2谁先执行对最终的程序结果并没有影响,那么就有可能在执行过程中,语句2先执行而语句1后执行。

虽然处理器会对指令进行重排序,但是它会保证程序最终结果会和代码顺序执行结果相同,那么它靠什么保证的呢?再看下面一个例子

上面4段语句可能的执行顺序: 语句1 -> 语句3 –> 语句2 ->语句4

不可能执行的顺序: 语句2-> 语句1–> 语句4 ->语句3

因为处理器在进行重排序时是会考虑指令之间的数据依赖性,如果一个指令Instruction 2必须用到Instruction 1的结果,那么处理器会保证Instruction 1会在Instruction 2之前执行。

重排序不会影响单个线程内程序执行的结果,但是多线程可能会有影响。

上面代码中,由于语句1和语句2没有数据依赖性,因此可能会被重排序。假如发生了重排序,在线程1执行过程中先执行语句2,而此是线程2会以为初始化工作已经完成,那么就会跳出while循环,去执行doSomethingwithconfig(context)方法,而此时context并没有被初始化,就会导致程序出错。

所以 要想并发程序正确地执行,必须要保证原子性、可见性以及有序性。只要有一个没有被保证,就有可能会导致程序运行不正确。

三 Java内存模型

Java内存模型规定所有的变量都是存在主存当中(类似于前面说的物理内存),每个线程都有自己的工作内存(类似于前面的高速缓存)。线程对变量的所有操作都必须在工作内存中进行,而不能直接对主存进行操作。并且每个线程不能访问其他线程的工作内存。

如: i = 10;

执行线程必须先在自己的工作线程中对变量i所在的缓存行进行赋值操作,然后再写入主存当中。而不是直接将数值10写入主存当中。

1.原子性

在Java中,对基本数据类型的变量的读取和赋值操作是原子性操作,即这些操作是不可被中断的,要么执行,要么不执行。如:

只有语句1是原子性操作,其他三个语句都不是原子性操作

语句1是直接将数值10赋值给x,也就是说线程执行这个语句的会直接将数值10写入到工作内存中。

语句2实际上包含2个操作,它先要去读取x的值,再将x的值写入工作内存,虽然读取x的值以及 将x的值写入工作内存 这2个操作都是原子性操作,但是合起来就不是原子性操作了。同样的,x++和 x = x+1包括3个操作:读取x的值,进行加1操作,写入新的值。

只有简单的读取、赋值(而且必须是将数字赋值给某个变量,变量之间的相互赋值不是原子操作)才是原子操作。

2.可见性

对于可见性,Java提供了volatile关键字来保证可见性。

当一个共享变量被volatile修饰时,它会保证修改的值会立即被更新到主存,当有其他线程需要读取时,它会去内存中读取新值。

而普通的共享变量不能保证可见性,因为普通共享变量被修改之后,什么时候被写入主存是不确定的,当其他线程去读取时,此时内存中可能还是原来的旧值,因此无法保证可见性。

也可以通过synchronized和Lock也能够保证可见性,synchronized和Lock能保证同一时刻只有一个线程获取锁然后执行同步代码,并且在释放锁之前会将对变量的修改刷新到主存当中。因此可以保证可见性。

3.有序性

在Java内存模型中,允许编译器和处理器对指令进行重排序,但是重排序过程不会影响到单线程程序的执行,却会影响到多线程并发执行的正确性。

在Java里面,可以通过volatile关键字来保证一定的“有序性”。另外可以通过synchronized和Lock来保证有序性,很显然,synchronized和Lock保证每个时刻是有一个线程执行同步代码,相当于是让线程顺序执行同步代码,自然就保证了有序性。

另外,Java内存模型具备一些先天的“有序性”,即不需要通过任何手段就能够得到保证的有序性,这个通常也称为 happens-before 原则。如果两个操作的执行次序无法从happens-before原则推导出来,那么它们就不能保证它们的有序性,虚拟机可以随意地对它们进行重排序。

happens-before原则(先行发生原则):

1:程序次序规则:一个线程内,按照代码顺序,书写在前面的操作先行发生于书写在后面的操作

2:锁定规则:一个unLock操作先行发生于后面对同一个锁额lock操作

3:volatile变量规则:对一个变量的写操作先行发生于后面对这个变量的读操作

4:传递规则:如果操作A先行发生于操作B,而操作B又先行发生于操作C,则可以得出操作A先行发生于操作C

5:线程启动规则:Thread对象的start()方法先行发生于此线程的每个一个动作

6:线程中断规则:对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生

7:线程终结规则:线程中所有的操作都先行发生于线程的终止检测,我们可以通过Thread.join()方法结束、Thread.isAlive()的返回值手段检测到线程已经终止执行

8:对象终结规则:一个对象的初始化完成先行发生于他的finalize()方法的开始

四. volatile关键字

一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:

  1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。

2)禁止进行指令重排序。

假如线程1先执行,线程2后执行:

每个线程在运行过程中都有自己的工作内存,那么线程1在运行的时候,会将stop变量的值拷贝一份放在自己的工作内存当中。

当线程2更改了stop变量的值之后,但是还没来得及写入主存当中,线程2转去做其他事情了,那么线程1由于不知道线程2对stop变量的更改,因此还会一直循环下去。

但是用volatile修饰之后就变得不一样了

  第一:使用volatile关键字会强制将修改的值立即写入主存;

  第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量stop的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效);

  第三:由于线程1的工作内存中缓存变量stop的缓存行无效,所以线程1再次读取变量stop的值时会去主存读取。

那么在线程2修改stop值时(当然这里包括2个操作,修改线程2工作内存中的值,然后将修改后的值写入内存),会使得线程1的工作内存中缓存变量stop的缓存行无效,然后线程1读取时,发现自己的缓存行无效,它会等待缓存行对应的主存地址被更新之后,然后去对应的主存读取最新的值。那么线程1读取到的就是最新的正确的值。

2.volatile不能保证原子性

volatile关键字保证了操作的可见性,但是volatile不能保证对变量的操作是原子性。

上面是对变量inc进行自增操作,由于volatile保证了可见性,那么在每个线程中对inc自增完之后,在其他线程中都能看到修改后的值啊,所以有10个线程分别进行了1000次操作,那么最终inc的值应该是1000*10=10000。

但每次运行结果都不一致。

误区: volatile关键字能保证可见性,但是上面的程序错在没能保证原子性。可见性只能保证每次读取的是最新的值,但是volatile没办法保证对变量的操作的原子性。

自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现:

假如某个时刻变量inc的值为10,

线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了;

然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,所以线程2会直接去主存读取inc的值,发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。

然后线程1接着进行加1操作,由于已经读取了inc的值,注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。

那么两个线程分别进行了一次自增操作后,inc只增加了1。

根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。

3.volatile是否能保证有序性

由于volatile关键字能禁止指令重排序,所以volatile能在一定程度上保证有序性。

volatile关键字禁止指令重排序有两层意思:

1)当程序执行到volatile变量的读操作或者写操作时,在其前面的操作的更改肯定全部已经进行,且结果已经对后面的操作可见;在其后面的操作肯定还没有进行;

2)在进行指令优化时,不能将在对volatile变量访问的语句放在其后面执行,也不能把volatile变量后面的语句放到其前面执行。

由于flag变量为volatile变量,那么在进行指令重排序的过程的时候,不会将语句3放到语句1、语句2前面,也不会讲语句3放到语句4、语句5后面。但是要注意语句1和语句2的顺序、语句4和语句5的顺序是不作任何保证的。

并且volatile关键字能保证,执行到语句3时,语句1和语句2必定是执行完毕了的,且语句1和语句2的执行结果对语句3、语句4、语句5是可见的

前面举这个例子的时候,提到有可能语句2会在语句1之前执行,那么可能导致context还没被初始化,而线程2中就使用未初始化的context去进行操作,导致程序出错。

这里如果用volatile关键字对inited变量进行修饰,就不会出现这种问题了,因为当执行到语句2时,必定能保证context已经初始化完毕。

五 :原子操作

通常情况下,在Java里面,++i或者--i不是线程安全的,这里面有三个独立的操作:或者变量当前值,为该值+1/-1,然后写回新的值。在没有额外资源可以利用的情况下,只能使用加锁才能保证读-改-写这三个操作时“原子性”的。

java.util.concurrent java并发库中提供了一些原子操作的实现类

如: java.util.concurrent.atomic.AtomicInteger

构造方法摘要

AtomicInteger()

创建具有初始值 0 的新 AtomicInteger。

AtomicInteger(int initialValue)

创建具有给定初始值的新 AtomicInteger。

方法摘要

int

addAndGet(int delta)

以原子方式将给定值与当前值相加。

boolean

compareAndSet(int expect, int update)

如果当前值 == 预期值,则以原子方式将该值设置为给定的更新值。

int

decrementAndGet()

以原子方式将当前值减 1。

double

doubleValue()

以 double 形式返回指定的数值。

float

floatValue()

以 float 形式返回指定的数值。

int

get()

获取当前值。

int

getAndAdd(int delta)

以原子方式将给定值与当前值相加。

int

getAndDecrement()

以原子方式将当前值减 1。

int

getAndIncrement()

以原子方式将当前值加 1。

int

getAndSet(int newValue)

以原子方式设置为给定值,并返回旧值。

int

incrementAndGet()

以原子方式将当前值加 1。

int

intValue()

以 int 形式返回指定的数值。

void

lazySet(int newValue)

最后设置为给定值。

long

longValue()

以 long 形式返回指定的数值。

void

set(int newValue)

设置为给定值。

String

toString()

返回当前值的字符串表示形式。

boolean

weakCompareAndSet(int expect, int update)

如果当前值 == 预期值,则以原子方式将该设置为给定的更新值。

字段的原子更新:

AtomicIntegerFieldUpdater<T>/AtomicLongFieldUpdater<T>/AtomicReferenceFieldUpdater<T,V>是基于反射的原子更新字段的值。

(1)字段必须是volatile类型的

(2)字段的描述类型(修饰符public/protected/default/private)是与调用者与操作对象字段的关系一致。也就是说调用者能够直接操作对象字段,那么就可以反射进行原子操作。但是对于父类的字段,子类是不能直接操作的,尽管子类可以访问父类的字段。

(3)只能是实例变量,不能是类变量,也就是说不能加static关键字。

(4)只能是可修改变量,不能使final变量,因为final的语义就是不可修改。实际上final的语义和volatile是有冲突的,这两个关键字不能同时存在。

(5)对于AtomicIntegerFieldUpdater和AtomicLongFieldUpdater只能修改int/long类型的字段,不能修改其包装类型(Integer/Long)。

如果要修改包装类型就需要使用AtomicReferenceFieldUpdater。

在上面的例子中DemoData的字段value3/value4对于AtomicIntegerFieldUpdaterDemo类是不可见的,因此通过反射是不能直接修改其值的。

在JDK 5之前Java语言是靠synchronized关键字保证同步的,这会导致有锁

锁机制存在以下问题:

(1)在多线程竞争下,加锁、释放锁会导致比较多的上下文切换和调度延时,引起性能问题。

(2)一个线程持有锁会导致其它所有需要此锁的线程挂起。

(3)如果一个优先级高的线程等待一个优先级低的线程释放锁会导致优先级倒置,引起性能风险。

volatile是不错的机制,但是volatile不能保证原子性。因此对于同步最终还是要回到锁机制上来。

独占锁是一种悲观锁,synchronized就是一种独占锁,会导致其它所有需要锁的线程挂起,等待持有锁的线程释放锁。而另一个更加有效的锁就是乐观锁。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。

CAS 操作:

上面的乐观锁用到的机制就是CAS,Compare and Swap。

CAS有3个操作数,内存值V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则什么都不做。

拿出AtomicInteger来研究在没有锁的情况下是如何做到数据正确性的。

private volatile int value;

首先毫无以为,在没有锁的机制下可能需要借助volatile原语,保证线程间的数据是可见的(共享的)。

这样才获取变量的值的时候才能直接读取。

public final int get() {return value;}

然后来看看++i是怎么做到的。

public final int incrementAndGet() {for (;;) {int current = get();int next = current + 1;if (compareAndSet(current, next))return next;}}

在这里采用了CAS操作,每次从内存中读取数据然后将此数据和+1后的结果进行CAS操作,如果成功就返回结果,否则重试直到成功为止。

而compareAndSet利用JNI来完成CPU指令的操作。

public final boolean compareAndSet(int expect, int update) {return unsafe.compareAndSwapInt(this, valueOffset, expect, update);}

整体的过程就是这样子的,利用CPU的CAS指令,同时借助JNI来完成Java的非阻塞算法(一个线程的失败或者挂起不应该影响其他线程的失败或挂起的算法)。其它原子操作都是利用类似的特性完成的。

六 Java中的锁

java中的一个同步块开始:

public class Counter{		private int count = 0;		public int inc(){				synchronized(this){				return ++count;				}		}}

在inc()方法中有一个synchronized(this)代码块。该代码块可以保证在同一时间只有一个线程可以执行return ++count。

Counter类用Lock代替synchronized达到了同样的目的:

public class Counter{		private Lock lock = new Lock();		private int count = 0;		public int inc(){				lock.lock();				int newCount = ++count;				lock.unlock();				return newCount;	}}

lock()方法会对Lock实例对象进行加锁,因此所有对该对象调用lock()方法的线程都会被阻塞,直到该Lock对象的unlock()方法被调用。

一个Lock类的实现:

public class Counter{		public class Lock{		private boolean isLocked = false;		public synchronized void lock() throws InterruptedException{				while(isLocked){						wait();				}		isLocked = true;		}		public synchronized void unlock(){		isLocked = false;		notify();		}}

当isLocked为true时,调用lock()的线程在wait()调用上阻塞等待。为防止该线程没有收到notify()调用也从wait()中返回(也称作虚假唤醒),这个线程会重新去检查isLocked条件以决定当前是否可以安全地继续执行还是需要重新保持等待,而不是认为线程被唤醒了就可以安全地继续执行了。如果isLocked为false,当前线程会退出while(isLocked)循环,并将isLocked设回true,让其它正在调用lock()方法的线程能够在Lock实例上加锁。

当线程完成了临界区(位于lock()和unlock()之间)中的代码,就会调用unlock()。执行unlock()会重新将isLocked设置为false,并且通知(唤醒)其中一个(若有的话)在lock()方法中调用了wait()函数而处于等待状态的线程。

锁的可重入性:

Java中的synchronized同步块是可重入的。这意味着如果一个java线程进入了代码中的synchronized同步块,并因此获得了该同步块使用的同步对象对应的管程上的锁,那么这个线程可以进入由同一个管程对象所同步的另一个java代码块。如下例子:

public class Reentrant{public synchronized outer(){inner();}public synchronized inner(){//do something}}

outer()和inner()都被声明为synchronized,这在Java中和synchronized(this)块等效。如果一个线程调用了outer(),在outer()里调用inner()就没有什么问题,因为这两个方法(代码块)都由同一个管程对象(”this”)所同步。如果一个线程已经拥有了一个管程对象上的锁,那么它就有权访问被这个管程对象同步的所有代码块。这就是可重入。线程可以进入任何一个它已经拥有的锁所同步着的代码块。

前面给出的Lock锁实现不是可重入的。重写Reentrant类,当线程调用outer()时,会在inner()方法的lock.lock()处阻塞住。如下:

public class Reentrant2{Lock lock = new Lock();public outer(){lock.lock();inner();lock.unlock();}public synchronized inner(){lock.lock();//do somethinglock.unlock();}}

两次lock()之间没有调用unlock(),第二次调用lock就会阻塞,看lock()实现后,会发现原因:一个线程是否被允许退出lock()方法是由while循环中的条件决定的。当前的判断条件是只有当isLocked为false时lock操作才被允许,而没有考虑是哪个线程锁住了它。

让这个Lock类具有可重入性,我们需要对它做一点改动:

注意到现在的while循环也考虑到了已锁住该Lock实例的线程。如果当前的锁对象没有被加锁(isLocked = false),或者当前调用线程已经对该Lock实例加了锁,那么while循环就不会被执行,调用lock()的线程就可以退出该方( “被允许退出该方法”在当前语义下就是指不会调用wait()而导致阻塞当前线程)

除此之外,我们需要记录同一个线程重复对一个锁对象加锁的次数。否则,一次unblock()调用就会解除整个锁,即使当前锁已经被加锁过多次。在unlock()调用没有达到对应lock()调用的次数之前,我们不希望锁被解除。

现在这个Lock类就是可重入的了。

在finally语句中调用unlock():

如果用Lock来保护临界区,并且临界区有可能会抛出异常,那么在finally语句中调用unlock()就显得非常重要了。这样可以保证这个锁对象可以被解锁以便其它线程能继续对其加锁。如:

这个结构可以保证当临界区抛出异常时Lock对象可以被解锁。如果不是在finally语句中调用的unlock(),当临界区抛出异常时,Lock对象将永远停留在被锁住的状态,这会导致其它所有在该Lock对象上调用lock()的线程一直阻塞。

Java并发库中提供了一些工具类:

闭锁 (CountDownLatch) :

CountDownLatch是JDK 5+里面闭锁的一个实现,允许一个或者多个线程等待某个事件的发生。CountDownLatch有一个正数计数器,countDown方法对计数器做减操作,await方法等待计数器达到0。所有await的线程都会阻塞直到计数器为0或者等待线程中断或者超时。

CyclicBarrier:

eg:

如果说CountDownLatch是一次性的,那么CyclicBarrier正好可以循环使用。它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。所谓屏障点就是一组任务执行完毕的时刻。

标签: #java锁加在方法和代码块