龙空技术网

大亭碎碎念(十):AGV路径规划算法

LearningYard学苑 171

前言:

此时咱们对“基于蚁群算法的机器人路径规划”大体比较着重,你们都需要知道一些“基于蚁群算法的机器人路径规划”的相关知识。那么小编同时在网摘上网罗了一些对于“基于蚁群算法的机器人路径规划””的相关知识,希望兄弟们能喜欢,大家快快来学习一下吧!

分享兴趣,传播快乐,

增长见闻,留下美好!

亲爱的您,这里是Learning Yard学苑。

今天大亭为大家带来我的

“AGV路径规划算法”,欢迎您的访问。

Share interest,spread happiness ,increase knowledge and leave beautiful.Dear you,this is the Learing Yard Academy!Today, Dating will brings you “AGV path planning algorithm”,Welcome your visit!

一、什么是AGV

AGV是Automated Guided Vehicles的缩写。又名无人搬运车,自动导航车,激光导航车。其显著的特点是无人驾驶,AGV上装备有自动导向系统,可以保障系统在不需要人工引航的情况下就能够沿预定的路线自动行驶,将货物或物料自动从起始点运送到目的地。据AGV自动行驶过程中的导航方式将AGV分为以下几种类型:.电磁感应引导式AGV、.激光引导式AGV、视觉引导式AGV、铁磁陀螺惯性引导式AGV、光学引导式AGV等。

AGV is the abbreviation of Automated Guided Vehicles. Also known as unmanned carrier, automatic navigation vehicle, laser navigation vehicle. Its remarkable feature is unmanned driving. AGV is equipped with automatic guidance system, which can ensure that the system can automatically drive along the predetermined route without manual pilotage, and automatically transport goods or materials from the starting point to the destination. AGV can be divided into the following types according to its navigation mode during automatic driving: electromagnetic induction guided AGV, laser guided AGV, visual guided AGV, ferromagnetic gyro inertial guided AGV, optical guided AGV, etc.

二、AGV路径规划算法

解决AGV路径规划问题主要采用蚁群算法和A*算法。在之前的推文中大亭已经做过关于蚁群算法的介绍,这里就不再赘述。而A*算法是一种静态路网中求解最短路径最有效最直接最有效的搜索方法。算法中的距离估算值与实际值越接近,最终搜索速度越快。其关键在于启发函数(F=G+H)的应用。其中G 是从起点A移动到指定方格的移动代价。H是从指定方格移动到终点的估计代价。在 A* 中,反复遍历 open list ,选择 F 值最小的方格,产生新的可供选择的方格,直到找到终点方格即可。所以,对于A*算法的优化核心也就在于节点扩展机制和估价函数的设计。

Ant colony algorithm and A * algorithm are mainly used to solve the AGV path planning problem. In the previous tweet, Oting has already introduced the ant colony algorithm, so I won't repeat it here. The A *) algorithm is the most effective, direct and effective search method for finding the shortest path in the static road network. The closer the estimated distance in the algorithm is to the actual value, the faster the final search speed will be. Seven key points are the application of heuristic function (F=G+H). Where G is the cost of moving from starting point A to the specified square. H is the estimated cost of moving from the specified grid to the destination. In A *, iterate through the open list, select the grid with the lowest F value, and generate a new grid for selection until the end grid is found. Therefore, the optimization core of A * algorithm is also the design of node expansion mechanism and evaluation function.

今天的分享就到这里了,如果您对文章有独特的想法,欢迎给我们留言。

让我们相约明天,祝您今天过得开心快乐!

That's it for today's sharing. If you have a unique idea about the article.please leave us a message.

Let us meet tomorrow I wish you a happy day today!

参考资料:百度、CSDN、中国知网

翻译来源:百度翻译

声明:本文由LearningYard新学苑原创,如有侵权,请联系删除!

— END —

文案|雷雅婷

排版|雷雅婷

审核|闫庆红

标签: #基于蚁群算法的机器人路径规划