龙空技术网

MySQL性能提升40%的AHI功能,你知道么?

姜老师带你飞 257

前言:

当前咱们对“mysql默认为讲师”都比较关注,我们都需要知道一些“mysql默认为讲师”的相关知识。那么小编在网络上收集了一些有关“mysql默认为讲师””的相关资讯,希望小伙伴们能喜欢,咱们快快来学习一下吧!

MySQL InnoDB存储引擎的自适应哈希(Adaptive Hash Index,下简称AHI)功能,想必很多同学都有所了解。

若用户的访问模式基本都是类似KV操作的点查询(point select),则InnoDB存储引擎会自动创建哈希索引。

在有了哈希索引后,查询无需走B+树搜索,而直接通过hash就能直接定位查询的数据。

因此,通过AHI功能,MySQL的查询性能就能得到大幅提升。

查询能提升多少呢?对于写入操作又是否有影响呢?AHI有什么副作用么?

今天姜老师就将带你走进最熟悉的InnoDB功能:AHI。

AHI读写性能影响

想必很多同学没有意识到,AHI能有40%的性能提升。而这就是哈希索引的威力。

从下图可以看到,在AHI的加持下,主键查询可以达到140万的QPS:

但若当我们通过参数 innodb_adaptive_hash_index 关闭AHI功能后,主键查询的性能下跌为了100万QPS:

对于写入操作,开启和关闭AHI功能对性能的影响都没有太大的区别。

这是因为当DML测试时, MySQL 的瓶颈主要是在磁盘写入。具体可以通过 sysbench 的 oltp_update_index.lua 基准测试进行观察。

AHI的副作用

作为一个几乎透明的功能,其实一般用户无需关心,基本可以认为AHI是即开即用的功能。

默认AHI参数的设置也是比较合理的,例如参数 innodb_adaptive_hash_index_parts 设置为 8 。

然而,AHI存在一个副作用:当删除大表,且缓冲池(Buffer Pool,下简称BP)比较大,如超过32G,则MySQL数据库可能会有短暂被hang住的情况发生。

这时会对业务线程造成一定影响,从而导致业务系统的抖动。

产生这个问题的原因是在删除表的时候,InnoDB存储引擎会将该表在BP中的内存都淘汰掉,释放可用空间。

这其中包括数据页、索引页、自适应哈希页等。

当BP比较大是,扫描BP中flush_list链表需要比较长的时间,因此会产生系统的抖动。

因此在海量的互联网并发业务中,删除表操作需要做精细的逻辑控制,如:

1. 业务低峰期删除大表;

2. 删除表前禁用AHI功能;

3. 控制脏页链表长度,只有长度小于一定阈值,才发起删除操作;

4. 删除表后启用AHI功能;

不过呢,所有这么麻烦的处理在 MySQL 8.0.23 版本之后,就都不再需要了。
因为官方已经彻底修复了这个问题:

注意,截至目前最新的 MySQL 5.7.34 版本并没有进行修复,所以 5.7 还需要用户自己做控制。

若有同学想知道 MySQL 8.0 中的具体修复逻辑,可见github上提交:


总结

AHI真的是一个InnoDB的好功能,这才是真正的AI数据库该有的样子。

但InnoDB存储引擎在2001年发布时,就支持了这个功能,创始人Heikki Tuuri真可谓具有卓越的远见。

但在使用时,要特别注意删除大表可能产生的hang住问题。

这会对业务产生一定的影响,对于较高要求的业务来说,或许是不能接受的。

不过,若升级到 MySQL 8.0.23 版本后,这些问题将不复存在。

那么,升级 MySQL 8.0 ,你准备好了么?

标签: #mysql默认为讲师