龙空技术网

高中物理知识点总结:时间和位移

教育一站通 167

前言:

此刻姐妹们对“时间位移课堂笔记”大致比较看重,小伙伴们都想要分析一些“时间位移课堂笔记”的相关内容。那么小编也在网摘上搜集了一些有关“时间位移课堂笔记””的相关知识,希望大家能喜欢,你们快快来学习一下吧!

高中物理知识点总结:时间和位移

1、时刻和时间间隔

(1)时刻和时间间隔可以在时间轴上表示出来。时间轴上的每一点都表示一个不同的时刻,时间轴上一段线段表示的是一段时间间隔(画出一个时间轴加以说明)。

(2)在学校实验室里常用秒表,电磁打点计时器或频闪照相的方法测量时间。

2、路程和位移

(1)路程:质点实际运动轨迹的长度,它只有大小没有方向,是标量。

(2)位移:是表示质点位置变动的物理量,有大小和方向,是矢量。它是用一条自初始位置指向末位置的有向线段来表示,位移的大小等于质点始、末位置间的距离,位移的方向由初位置指向末位置,位移只取决于初、末位置,与运动路径无关。

(3)位移和路程的区别:

(4)一般来说,位移的大小不等于路程。只有质点做方向不变的无往返的直线运动时位移大小才等于路程。

3、矢量和标量

(1)矢量:既有大小、又有方向的物理量。

(2)标量:只有大小,没有方向的物理量。

4、直线运动的位置和位移:在直线运动中,两点的位置坐标之差值就表示物体的位移。

常见考点考法

这部分知识难度也不大,在平时的练习中可能出现,且往往以选择题的形式出现,但是高考中单独出现的几率比较小。

常见误区提醒

时间与时刻:时间表示一个积累过程它是由无数个连续时刻即时间点累积的结果,包含了物体运动、发展所经历的过程,对应的是一个运动过程。而时刻则表示某一个时间点没有延续更不能累积,是物体运动、发展过程中到达的某一个状态。如果我们把时间当成一个录像过程,那么时刻就只能是一张照片.

位移与路程:路程是学生在初中甚至小学就接触到的一个概念,在同学们的意识中根深蒂固,难以改变。然而为了物理的学习我们大家不得不去强迫自己接受位移这一概念。路程很容易理解也就是我们所走过的路径的总长度,而位移则表示是物体始末位置的改变,表示为始末位置之间的线段长度。在物理中路程需要考虑物体的具体运动过程,而位移则不需要考虑这些。例如:小明从家走到学校有5公里的路程,我们就要具体考虑小明的运动路线,但要考虑小明的位移,我们只需要从小明的起始位置(家)到小明的末位置(学校)之间做一条有向线段,线段的长度就表示位移的大小,线段的方向就是位移的方向,而不必再考虑具体小明走的什么路线.

矢量与标量:由于标量只有大小没有方向,因此对与标量只需直接对其进行代数运算即可,而矢量由于存在方向性,因此对矢量进行运算时应当遵循平行四边形法则.

高中年级物理电容器知识点

1.带电粒子在电场中的加速(Vo=0):W=EK或qU=mVt2/2,Vt=(2qU/m)1/2

2.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注:

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;常见电场的电场线分布要求熟记;

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

(6)电容单位换算:1F=106F=1012PF;

(7)电子伏(eV)是能量的单位,1eV=1.6010-19J;

(8)其它相关内容:静电屏蔽/示波管、示波器及其应用等势面。

高中物理必背知识点整理

(1)粒子散射实验

1909年,卢瑟福及助手盖革和马斯顿完成的。

现象:

a.绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b.有少数粒子发生较大角度的偏转。

c.有极少数粒子的偏转角超过了90°,有的几乎达到180°,即被反向弹回。

(2)原子的核式结构模型

由于粒子的质量是电子质量的七千多倍,所以电子不会使粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对粒子的运动产生明显的影响。

如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的粒了所受正电荷的作用力在各方向平衡,粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

10个重要的初中物理知识点

1.物体在振动,我们“不一定”能听得到声音

【简析】

1、声音的传播需要介质,在真空中声音是不能传播的,登上月球的宇航员们即使相距很近也要靠无线电话交谈。

2、人的听觉是有一定的频率范围的,即:20~20000Hz,频率低于20Hz的声波叫次声波,如发生海啸、地震时产生的声波是次声波;而频率高于20000Hz的声波是超声波,如医院里的B超。对于超声波和次声波人耳是无法听到的。

3、人耳听到声音的条件除了与频率有关外,还更距离发声体的远近有关,如果距离发声体太远,通过空气传入人耳后不能引起鼓膜的振动,还是听不到声音。

2.密度大于水的物体放在水中“不一定”下沉

【简析】

密度大于水的物体放在水中有三种情况,下沉、悬浮、漂浮,到底处于哪种状态,与物体全部浸入水中受到的重力和浮力的大小有关:

1、下沉。根据F浮=Vρ水g和G=Vρ物g,因为ρ水<ρ物,f浮,物体下沉,此时,该物体是实心的。例如:铁块放在水中下沉。

2、悬浮,当该物体内部的空心所造成该物体的重力与它浸没在水中所排开水的重力相等时该物体悬浮。(在挖空的过程中,浮力不变,重力逐渐减小)

3、漂浮,当物体内部空心且空心较大时,该物体漂浮。(挖空的部分较大,使得浮力大于重力,物体上浮,直至浮出水面,浮力再次等于重力)例如:钢铁制成的轮船。

3.物体温度升高了,“不一定”是吸收了热量

【简析】

物体温度升高了,只能说明物体内部的分子无规则热运动加快了,物体的内能增加了。使物体内能增加的方法有两个。

1、让物体吸热(热传递);

2、外界对物体做功(做功)。

例如:一根锯条温度温度升高了,它可能用炉子烤了烤即吸收了热量;它也可能是刚刚锯过木头即通过克服摩擦做功自己的内能增加,温度升高。

4.物体吸收了热量,温度“不一定”升高

【简析】

物体吸收热量,最直接的变化就是物体内能增加,但我们知道内能是物体内部所有分子动能和是势能的总和。

1、如果吸收热量后物体的状态不发生变化,即分子势能不变,只改变了分子的动能,则物体的温度就会升高,如给铁块加热,铁块的温度升高;

2、如果吸收热量后,物体的状态发生变化,如晶体熔化,液体沸腾,虽然都在不断的吸收热量,但温度并不升高,温度始终保持不变。非晶体吸热时,分子的动能和势能都在发生变化,所以状态变化的同时,温度也升高。

5.物体收到力的作用,运动状态“不一定”发生改变

【简析】

第一,力有两个作用效果,1、改变物体的形状;2、改变物体的运动状态。所以物体受到力的作用,不一定运动状态发生改变。

第二,即使力的效果是改变物体的运动状态,运动状态的改变是由物体受到力的共同效果决定的。1、物体受到非平衡力作用时,运动状态一定改变(运动速度的大小或方向改变)。2、物体受到平衡力作用时,运动状态一定不改变(静止或匀速直线运动)。

6.有力作用在物体上,该力“不一定”对物体做功

【简析】

力对物体做功必须同时满足两个条件:

1、有力作用在物体上;2、物体在力的方向上移动了距离,两者缺一不可。

根据公式W=F.S得:有力无距离,不做功,所谓的劳而无功,最常见的现象是“推而未动”;有距离无力,不做功,所谓的不劳无功,最常见的现象是物体因惯性运动、物体运动的方向与力的方向垂直时。

7.小磁针靠近钢棒相互吸引,钢棒“不一定”有磁性

【简析】

磁现象中的吸引有两种情况:1、异名磁极相互吸引;2、磁体有吸引铁、钴、镍等物质的性质。所以和磁体靠近相互吸引的可能是铁、钴、镍等物质,也可能是磁体。

8.“PZ220V40W”的电灯,实际功率“不一定”是40W

【简析】

1、当U实=U额=220V时,灯泡的实际功率P实=P额=40W,此时灯泡正常发光;

2、而U实〈U额时,灯泡的实际功率P实〈P额,此时灯泡发光较暗,不能正常工作;

3、当U实〉U额时,灯泡的实际功率P实〉P额,此时灯泡发出强光,寿命缩短易烧毁。

9.浸在水中的物体“不一定"受到浮力的作用

【简析】

浮力是浸在液体中的物体受到液体对物体向上和向下的压力之差,因为下表面浸入液体较深,受到的压力始终大于上表面,所以浮力的方向始终是竖直向上的。

当物体的底部与容器底部紧密结合,无缝隙时(即相当于粘在了一起),物体不受向上的液体的压力,所以不受浮力的作用。

例如:陷入河底淤泥中的大石头,三分之一的露出泥外即浸在水中,但石头不受浮力作用。

10.液体对容器底部的压力不一定等于容器内液体所受的重力

【简析】

公式P=F/S,是计算压强的普遍适用的公式,而P=ρgh是专门用来求液体产生压强的公式,由P=ρgh我们可以看出,在液体的密度一定时,液体产生的压强仅与液体的深度h有关,再根据F=PS不难看出液体对容器底产生的压力是由液体的密度、液体的深度和容器的底面积决定的。

即:液体对容器底部产生的压力:F=ρghs。然而只有柱形容器G液=mg=ρvg=ρghs=F。而容器的形状有很多种,只要不是柱形容器其内部液体的体积v≠hs,所以F≠G液。

容器内盛液体,液体对容器底部的压力F和液重G液的关系是:1、柱形容器:F=G液2、非柱形容器:F≠G液(广口式容器:F〈G液缩口式容器:F〉G液)

物理知识点考点总结

考点1:电荷、电荷守恒定律

自然界中存在两种电荷:正电荷和负电荷。例如:用毛皮摩擦过的橡胶棒带负电,用丝绸摩擦过的玻璃棒带正电。

1.元电荷:电荷量e=1.60×10-19C的电荷,叫元电荷。说明任意带电体的电荷量都是元电荷电荷量的整数倍。

2.电荷守恒定律:电荷既不能被创造,又不能被消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,电荷的总量保持不变。

3.两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分。

考点2:库仑定律

1.内容:在真空中静止的两个点电荷之间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在他们的连线上。

2.公式:

3.适用条件:真空中的点电荷。

4.点电荷:如果带电体间的距离比它们的大小大得多,以致带电体的形状对相互作用力的影响可忽略不计,这样的带电体可以看成点电荷。

考点3:电场强度

1.电场

(1)定义:存在于电荷周围、能传递电荷间相互作用的'一种特殊物质。

(2)基本性质:对放入其中的电荷有力的作用。

2.电场强度

⑴ 定义:放入电场中的电荷受到的电场力F与它的电荷量q的比值,叫做该点的电场强度。

⑵ 单位:N/C或V/m。

⑶ 电场强度的三种表达方式的比较

⑷方向:规定正电荷在电场中受到的电场力的方向为该点电场强度的方向,或与负电荷在电场中受到的电场力的方向相反。

⑸叠加性:多个电荷在电场中某点的电场强度为各个电荷单独在该点产生的电场强度的矢量和,这种关系叫做电场强度的叠加,电场强度的叠加尊从平行四边形定则。

考点4:电场线、匀强电场

1.电场线:为了形象直观描述电场的强弱和方向,在电场中画出一系列的曲线,曲线上的各点的切线方向代表该点的电场强度的方向,曲线的疏密程度表示场强的大小。

2.电场线的特点

⑴ 电场线是为了直观形象的描述电场而假想的、实际是不存在的理想化模型。

⑵ 始于正电荷或无穷远,终于无穷远或负电荷,静电场的电场线是不闭合曲线。

⑶ 任意两条电场线不相交。

⑷ 电场线的疏密表示电场的强弱,某点的切线方向表示该点的场强方向,它不表示电荷在电场中的运动轨迹。

⑸ 沿着电场线的方向电势降低;电场线从高等势面(线)垂直指向低等势面(线)。

3.匀强电场

⑴定义:场强方向处处相同,场强大小处处相等的区域称之为匀强电场。

⑵特点:匀强电场中的电场线是等距的并行线。平行正对的两金属板带等量异种电荷后,在两板之间除边缘外的电场就是匀强电场。

4.几种典型的电场线

孤立的正电荷、负电荷、等量异种电荷、等量同种电荷、带等量异种电荷的平行金属板间(正点电荷与大金属板间)的电场线

考点5:电势能

1.定义:电荷在电场中某点的电势能在数值上等于把电荷从这一点移动到电势能为零处(电势为零)静电力所做的功。

2.单位:焦耳(J),电子伏(eV)是能量的单位,1eV=1.60×10-19J。

3.矢标性:是标量,但有正负,电势能的正负表示该点电势能比零电势能点高还是低。

4.电场力做功与电势能变化的关系

⑴静电力对电荷做正功电势能就减小,静电力对电荷做负功电势能就增加。

⑵静电力对电荷做功等于电荷电势能的变化量,所以静电力的功是电荷电势能变化的量度。用表示电势能,则将电荷从A点移到B点,有

标签: #时间位移课堂笔记