前言:
现在你们对“人工智能的主流语言”可能比较注重,兄弟们都需要了解一些“人工智能的主流语言”的相关文章。那么小编也在网络上收集了一些对于“人工智能的主流语言””的相关内容,希望你们能喜欢,姐妹们快快来了解一下吧!AI系统的开发必须有计算机代码,而计算机程序的开发有不同类型的编程语言可以选择。本文分析哪些编程语言最适合你的人工智能或机器学习用例开发。文中给出了一个想要在人工智能行业成功所需的5种编程语言的简单列表。针对给定的人工智能或机器学习项目,每种语言都有相应的优势和缺点,所以在选择开发语言前要考虑最终的目标。
这5个最适合人工智能行业的编程语言是:Python;R;Java;Scala;Rust。
Python
Python是人工智能行业最主流的编程语言,因为python具有易于学习的语法、大量的库和框架、对众多AI算法的动态适用性、而且相对容易编写。
与其他编程语言相比,python的缺点包括是运行速度慢、面向移动设备的编码功能较差、不利于处理内存密集型任务。
R
R是另一个机器学习编程语言。R语言最常用于数据分析、大数据建模和数据可视化。R语言包含多个包设置和大量的材料,使得其非常适合处理数据为中心的任务。
R语言的缺点包括大量使用内存、缺乏基本安全功能(无法嵌入web应用中)、和基于古老的S编程语言。
Java
Java是一种面向对象的编程语言,优势包括可以与搜索算法(搜索算法是能够有效支持大规模项目的简化框架)很好地结合、易于调试代码等。
与其他语言相比,Java的缺点包括性能不佳;由于运行在Java虚拟机之上,因此内存使用效率低下。以上两个缺点会导致硬件成本增加。
Scala
Scala是一个可扩展的编程语言,可以处理大量大数据。Scala支持支持面向对象和函数式编程的风格。由于其简洁的代码风格,Scala比其他语言更具可读性和易于编写。
Scala的不足包括所有面向对象和函数式编程的缺点。因为该语言融合了多种编程风格,因此使得理解类型信息更加困难。此外,切换回面向对象样式的选项也可能被视为弊端,因为在编写代码时不会在功能上进行思考。
Rust
Rust是系统级的编程语言。创建该语言的目的是编写“安全”代码,也就是说对象是由程序本身管理的。这样程序员就无需进行指针计算或独立管理内存。使用的内存较少一般会使代码更简洁,因此可能更易于编程。
标签: #人工智能的主流语言