龙空技术网

最小生成树prime算法、kruskal算法 最短路径算法floyd、dijkstra

爱音乐的程序员小新人 1096

前言:

目前小伙伴们对“kruskal算法描述”大约比较关注,咱们都需要了解一些“kruskal算法描述”的相关资讯。那么小编同时在网摘上网罗了一些有关“kruskal算法描述””的相关内容,希望兄弟们能喜欢,朋友们一起来学习一下吧!

带权图分为有向和无向,无向图的最短路径又叫做最小生成树,有prime算法和kruskal算法;有向图的最短路径算法有dijkstra算法和floyd算法。

生成树的概念:联通图G的一个子图如果是一棵包含G的所有顶点的树,则该子图称为G的生成树 生成树是联通图的极小连通子图。所谓极小是指:若在树中任意增加一条边,则 将出现一个回路;若去掉一条边,将会使之编程非连通图。生成树各边的权 值总和称为生成素的权。权最小的生成树称为最小生成树,常用的算法有prime算法和kruskal算法。

最短路径问题旨在寻找图中两节点之间的最短路径,常用的算法有:floyd算法和dijkstra算法。

构造最小生成树一般使用贪心策略,有prime算法和kruskal算法

prime算法的基本思想

1.清空生成树,任取一个顶点加入生成树

2.在那些一个端点在生成树里,另一个端点不在生成树里的边中,选取一条权最小的边,将它和另一个端点加进生成树

3.重复步骤2,直到所有的顶点都进入了生成树为止,此时的生成树就是最小生成树

View Code

int prime(int cur)

{

int index;

int sum = 0;

memset(visit, false, sizeof(visit));

visit[cur] = true;

for(int i = 0; i < m; i ++){

dist[i] = graph[cur][i];

}

for(int i = 1; i < m; i ++){

int mincost = INF;

for(int j = 0; j < m; j ++){

if(!visit[j] && dist[j] < mincost){

mincost = dist[j];

index = j;

}

}

visit[index] = true;

sum += mincost;

for(int j = 0; j < m; j ++){

if(!visit[j] && dist[j] > graph[index][j]){

dist[j] = graph[index][j];

}

}

}

return sum;

}

kruskal算法:构造一个只含n个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树的根节点,则它是一个含有n棵树的森林 。之后,从网的边集中选取一条权值最小的边,若该边的两个顶点分属不同的树 ,则将其加入子图,也就是这两个顶点分别所在的 两棵树合成一棵树;反之,若该边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林只有一棵树。kruskal算法能够在并查集的基础很快的实现。结合例子来介绍具体算法实现(其中并查集的部分可以详见并查集介绍部分)

View Code

#include<iostream>

#include<algorithm>

using namespace std;

const int size = 128;

int n;

int father[size];

int rank[size];

//把每条边成为一个结构体,包括起点、终点和权值

typedef struct node

{

int val;

int start;

int end;

}edge[SIZE * SIZE / 2];

//把每个元素初始化为一个集合

void make_set()

{

for(int i = 0; i < n; i ++){

father[i] = i;

rank[i] = 1;

}

return ;

}

//查找一个元素所在的集合,即找到祖先

int find_set(int x)

{

if(x != father[x]){

father[x] = find_set(father[x]);

}

return father[x];

}

//合并x,y所在的两个集合:利用Find_Set找到其中两个

//集合的祖先,将一个集合的祖先指向另一个集合的祖先。

void Union(int x, int y)

{

x = find_set(x);

y = find_set(y);

if(x == y){

return ;

}

if(rank[x] < rank[y]){

father[x] = find_set(y);

}

else{

if(rank[x] == rank[y]){

rank[x] ++;

}

father[y] = find_set(x);

}

return ;

}

bool cmp(pnode a, pnode b)

{

return a.val < b.val;

}

int kruskal(int n) //n为边的数量

{

int sum = 0;

make_set();

for(int i = 0; i < n; i ++){ //从权最小的边开始加进图中

if(find_set(edge[i].start) != find_set(edge[i].end)){

Union(edge[i].start, edge[i].end);

sum += edge[i].val;

}

}

return sum;

}

int main()

{

while(1){

scanf("%d", &n);

if(n == 0){

break;

}

char x, y;

int m, weight;

int cnt = 0;

for(int i = 0; i < n - 1; i ++){

cin >> x >> m;

//scanf("%c %d", &x, &m);

//printf("%c %d ", x, m);

for(int j = 0; j < m; j ++){

cin >> y >> weight;

//scanf("%c %d", &y, &weight);

//printf("%c %d ", y, weight);

edge[cnt].start = x - 'A';

edge[cnt].end = y - 'A';

edge[cnt].val = weight;

cnt ++;

}

}

sort(edge, edge + cnt, cmp); //对边按权从小到大排序

cout << kruskal(cnt) << endl;

}

}

最短路径问题旨在寻找图中两节点之间的最短路径,常用的算法有:floyd算法和dijkstra算法。

floyd算法是最简单的最短路径算法,可以计算图中任意两点间的最短路径 folyd算法的时间复杂度是O(N3),如果是一个没有边权的图,把相连的两点 间的距离设为dist[i][j] = 1,不相连的两点设为无穷大,用 floyd算法可以判断i,j两点是否有路径相连。

View Code

void floyd()

{

for(int k = 0; k < n; k ++){ //作为循环中间点的k必须放在最外一层循环

for(int i = 0; i < n; i ++){

for(int j = 0; j < n; j ++){

if(dist[i][j] > dist[i][k] + dist[k][j]){

dist[i][j] = dist[i][k] + dist[k][j]; //dist[i][j]得出的是i到j的最短路径

}

}

}

}

}

dijkstra算法用来计算从一个点到其他所有点的最短路径的算法,复杂度O(N2)。

View Code

void dijkstra(int s) //s是起点

{

memset(visit, false, sizeof(visit));

visit[s] = true;

for(int i = 0; i < n; i ++){

dist[i] = graph[s][i];

}

int index;

for(int i = 1; i < n; i ++){

int mincost = INF;

for(int j = 0; j < n; j ++){

if(!visit[j] && dist[j] < mincost){

mincost = dist[j];

index = j;

}

}

visit[index] = true;

for(int j = 0; j < n; j ++){

if(!visit[j] && dist[j] > dist[index] + graph[index][j]){

dist[j] = dist[index] + graph[index][j];

}

}

}

}

void dijkstra(int s) //s是起点

{

memset(visit, false, sizeof(visit));

for(int i = 0; i < n; i ++){

dist[i] = INF;

}

visit[s] = true;

dist[s] = 0;

int index;

for(int i = 1; i < n; i ++){

int mincost = INF;

for(int j = 0; j < n; j ++){

if(!visit[j] && dist[j] < mincost){

mincost = dist[j];

index = j;

}

}

visit[index] = true;

for(int j = 0; j < n; j ++){

if(!visit[j] && dist[j] > dist[index] + graph[index][j]){

dist[j] = dist[index] + graph[index][j];

}

}

}

}

标签: #kruskal算法描述