龙空技术网

JAVA同一IP访问同一接口进行频率限制及令牌桶实战使用场景

jeesite 71

前言:

当前我们对“java中默认访问权限”大致比较看重,兄弟们都需要学习一些“java中默认访问权限”的相关文章。那么小编在网络上收集了一些有关“java中默认访问权限””的相关文章,希望你们能喜欢,各位老铁们一起来学习一下吧!

1.如何对同一IP访问同一接口进行每秒、每分钟、每小时频率限制

话不多说,直接开干,首先写一个注解类

import java.lang.annotation.*;/** * 接口限流 * @author rs * */@Inherited@Documented@Target({ElementType.FIELD,ElementType.TYPE,ElementType.METHOD})@Retention(RetentionPolicy.RUNTIME)public @interface VisitLimit {    //标识 指定sec时间段内的访问次数限制    int limit() default 5;      //标识 时间段    long sec() default 5;}复制代码

使用注解的原因是:我们使用拦截器在请求处理之前,检查某个请求接口是否有该注解,如果有该注解,获取访问次数和时间段(比如:在1s中只能访问一次)。接下来我们就来写一个拦截器

import org.test.annotation.VisitLimit;import org.test.exception.BusinessException;import org.test.redis.RedisCache;import org.test.service.redis.RedisService;import org.test.util.IPUtils;import org.test.util.RedisUtils;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Component;import org.springframework.web.method.HandlerMethod;import org.springframework.web.servlet.ModelAndView;import org.springframework.web.servlet.handler.HandlerInterceptorAdapter;import javax.servlet.ServletOutputStream;import javax.servlet.http.HttpServletRequest;import javax.servlet.http.HttpServletResponse;import java.io.IOException;import java.lang.reflect.Method;@Componentpublic class VisitLimitInterceptor extends HandlerInterceptorAdapter {	     @Autowired	private RedisUtils redisService;    /**     * 处理请求之前被调用     * @param request     * @param response     * @param handler     * @return     * @throws Exception     */    @Override    public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {        if (handler instanceof HandlerMethod) {            HandlerMethod handlerMethod = (HandlerMethod) handler;            Method method = handlerMethod.getMethod();            if (!method.isAnnotationPresent(VisitLimit.class)) {                return true;            }            VisitLimit accessLimit = method.getAnnotation(VisitLimit.class);            if (accessLimit == null) {                return true;            }            int limit = accessLimit.limit();            long sec = accessLimit.sec();            String key = IPUtils.getIpAddr(request) + request.getRequestURI();            Integer maxLimit =null;            Object value =redisService.get(key);            if(value!=null && !value.equals("")) {            	maxLimit = Integer.valueOf(String.valueOf(value));            }            if (maxLimit == null) {            	redisService.set(key, "1", sec);            } else if (maxLimit < limit) {            	Integer i = maxLimit+1;            	redisService.set(key, i.toString(), sec);            } else {//              output(response, "请求太频繁!");//            	return false;                throw new BusinessException(500,"请求太频繁!");            }        }        return true;    }     @Override    public void postHandle(HttpServletRequest request, HttpServletResponse response, Object handler, ModelAndView modelAndView) throws Exception {     }     @Override    public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {     }复制代码

这里用到了redis,解释一下redis的key(IP+URL)记录了某个ip访问某个接口,value存的是访问的次数,加上一个过期时间,过期时间就是我们在注解上赋值的值。

这里的redis的部分代码也贴出来

@Servicepublic class RedisUtils {    @Resource    private RedisTemplate redisTemplate;  /**     * 写入缓存设置时效时间     *     * @param key     * @param value     * @param expireTime 有效时间,单位秒     * @return     */    public boolean set(final String key, Object value, Long expireTime) {        boolean result = false;        try {            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();            operations.set(key, value);            redisTemplate.expire(key, expireTime, TimeUnit.SECONDS);            result = true;        } catch (Exception e) {            e.printStackTrace();        }        return result;    }}复制代码

#怎么获取用户的真实IP呢???如下

import org.slf4j.Logger;import org.slf4j.LoggerFactory;import javax.servlet.http.HttpServletRequest;/** * IP Utils * @author rs * */public class IPUtils {	private static Logger logger = LoggerFactory.getLogger(IPUtils.class);	/**	 * 获取IP地址	 * 	 * 使用Nginx等反向代理软件, 则不能通过request.getRemoteAddr()获取IP地址	 * 如果使用了多级反向代理的话,X-Forwarded-For的值并不止一个,而是一串IP地址,X-Forwarded-For中第一个非unknown的有效IP字符串,则为真实IP地址	 */	public static String getIpAddr(HttpServletRequest request) {    	String ip = null;        try {            ip = request.getHeader("x-forwarded-for");	         if (ip != null && ip.length() != 0 && !"unknown".equalsIgnoreCase(ip)) {	             // 多次反向代理后会有多个ip值,第一个ip才是真实ip	             if( ip.indexOf(",")!=-1 ){	                 ip = ip.split(",")[0];	             }	         }	         if (ip == null || ip.length() == 0 || "unknown".equalsIgnoreCase(ip)) {	             ip = request.getHeader("Proxy-Client-IP");	         }	         if (ip == null || ip.length() == 0 || "unknown".equalsIgnoreCase(ip)) {	             ip = request.getHeader("WL-Proxy-Client-IP");	         }	         if (ip == null || ip.length() == 0 || "unknown".equalsIgnoreCase(ip)) {	             ip = request.getHeader("HTTP_CLIENT_IP");	         }	         if (ip == null || ip.length() == 0 || "unknown".equalsIgnoreCase(ip)) {	             ip = request.getHeader("HTTP_X_FORWARDED_FOR");	         }	         if (ip == null || ip.length() == 0 || "unknown".equalsIgnoreCase(ip)) {	             ip = request.getHeader("X-Real-IP");	         }	         if (ip == null || ip.length() == 0 || "unknown".equalsIgnoreCase(ip)) {	             ip = request.getRemoteAddr();	         }        } catch (Exception e) {        	logger.error("IPUtils ERROR ", e);        }                return ip;    }	}复制代码

下面来正式使用一下

@VisitLimit(limit = 1, sec = 1)@RequestMapping(value = "/close", method = RequestMethod.POST)复制代码

这种方式不能很好的应对突发请求,需要对这一类情形平滑处理,比如200ms处理一个请求,下面就到令牌桶出场了!

二、令牌桶实战介绍

2.1 先来个总结吧,让大家分清什么时候用令牌桶,什么时候用漏桶

令牌桶:生产一个令牌消费一个漏桶: 处理大流量,并且以固定的速度平滑处理

使用场景:geteway网关

Bucket4j是基于令牌桶算法实现

package org.test.gateway.filter.limit;import java.time.Duration;import java.util.Map;import java.util.concurrent.ConcurrentHashMap;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.cloud.gateway.filter.GatewayFilter;import org.springframework.cloud.gateway.filter.GatewayFilterChain;import org.springframework.core.Ordered;import org.springframework.core.io.buffer.DataBuffer;import org.springframework.http.HttpHeaders;import org.springframework.http.server.reactive.ServerHttpRequest;import org.springframework.http.server.reactive.ServerHttpResponse;import org.springframework.stereotype.Component;import org.springframework.util.StringUtils;import org.springframework.web.server.ServerWebExchange;import io.github.bucket4j.Bandwidth;import io.github.bucket4j.Bucket;import io.github.bucket4j.Bucket4j;import io.github.bucket4j.Refill;import reactor.core.publisher.Mono;@Componentpublic class RateLimitByIpFilter implements GatewayFilter, Ordered {	private final static Logger logger = LoggerFactory.getLogger(RateLimitByIpFilter.class);	private int capacity;	private int refillTokens;	private Duration refillDuration;	private static final Map<String, Bucket> CACHE = new ConcurrentHashMap<>();	public RateLimitByIpFilter() {	}	public RateLimitByIpFilter(int capacity, int refillTokens, Duration refillDuration) {		this.capacity = capacity;		this.refillTokens = refillTokens;		this.refillDuration = refillDuration;	}	@Override	public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {		String ip = getIpAddr(exchange.getRequest());		if (ip.indexOf("192.168") != -1 || ip.indexOf("172.31.202") != -1) {			return chain.filter(exchange);		}		Bucket bucket = CACHE.computeIfAbsent(ip, k -> createNewBucket());		logger.info("限频来访ip: " + ip + ", 可用令牌数量:" + bucket.getAvailableTokens());		if (bucket.tryConsume(1)) {			return chain.filter(exchange);		} else {			// 不合法(超过限流)			ServerHttpResponse response = exchange.getResponse();			// 设置headers			HttpHeaders httpHeaders = response.getHeaders();			httpHeaders.add("Content-Type", "application/json; charset=UTF-8");			httpHeaders.add("Cache-Control", "no-store, no-cache, must-revalidate, max-age=0");			// 设置body			String warningStr = "{\"code\":\"500\",\"message\":\"超过限流\"}";			DataBuffer bodyDataBuffer = response.bufferFactory().wrap(warningStr.getBytes());			return response.writeWith(Mono.just(bodyDataBuffer));		}	}	@Override	public int getOrder() {		return -1000;	}	private Bucket createNewBucket() {		Refill refill = Refill.of(refillTokens, refillDuration);		Bandwidth limit = Bandwidth.classic(capacity, refill);		return Bucket4j.builder().addLimit(limit).build();	}	public static String getIpAddr(ServerHttpRequest request) {		String ip = "";		String str = request.getHeaders().getFirst("x-forwarded-for");		if (StringUtils.isEmpty(str)) {			ip = request.getRemoteAddress().getAddress().getHostAddress();			logger.info("通过address方式限流获取到的IP为:" + ip);			return ip;		} else {			String[] ips = str.split(",");			for (String s : ips) {				if (s.indexOf("192.168") != -1 || s.indexOf("172.31.202") != -1) {					continue;				}				ip = ip + s + ",";			}			ip = ip.substring(0, ip.length() - 1);			logger.info("通过x-forwarded-for限流获取到的IP,且过滤掉内网后的地址为:" + ip);			if (ip.indexOf(",") != -1) {				ip = ip.substring(0, ip.indexOf(","));				return ip.trim();			}			return ip.trim();		}	}}复制代码

配置route: TEST-AUTH/**的api接口都会路由到TEST-AUTH服务

@SpringBootApplicationpublic class GateWayApplication {	public static void main(String[] args) {		SpringApplication.run(GateWayApplication.class, args);	}	@Bean	public RouteLocator routeLocator(RouteLocatorBuilder builder) {		return builder.routes()				// 认证中心				.route(r -> r.path("/TEST-AUTH/**")						.filters(f -> f.stripPrefix(1).filter(new RateLimitByIpFilter(1, 1, Duration.ofSeconds(1))))						.uri("lb://TEST-AUTH").id("TEST-AUTH"))				.build();	}}复制代码
三、分布式限流(这里摘自京东抢购业务)

使用Redis+Lua的方式来实现

local key = "rate.limit:" .. KEYS[1] --限流KEYlocal limit = tonumber(ARGV[1])        --限流大小local current = tonumber(redis.call('get', key) or "0")if current + 1 > limit then --如果超出限流大小  return 0else  --请求数+1,并设置1秒过期  redis.call("INCRBY", key,"1")   redis.call("expire", key,"1")   return  1end复制代码
public static boolean accquire() throws IOException, URISyntaxException {    Jedis jedis = new Jedis("127.0.0.1");    File luaFile = new File(RedisLimitRateWithLUA.class.getResource("/").toURI().getPath() + "limit.lua");    String luaScript = FileUtils.readFileToString(luaFile);    String key = "ip:" + System.currentTimeMillis()/1000; // 当前秒    String limit = "5"; // 最大限制    List<String> keys = new ArrayList<String>();    keys.add(key);    List<String> args = new ArrayList<String>();    args.add(limit);    Long result = (Long)(jedis.eval(luaScript, keys, args)); // 执行lua脚本,传入参数    return result == 1;}复制代码

简单说明一下:redis k = rate.limit:ip:当前秒 V: 5

作者:汀雨笔记

链接:

来源:稀土掘金

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

标签: #java中默认访问权限 #java统计访问次数 #java限制接口访问次数