前言:
今天同学们对“用遗传算法解决多元函数的优化问题”大体比较着重,兄弟们都想要剖析一些“用遗传算法解决多元函数的优化问题”的相关文章。那么小编也在网上网罗了一些关于“用遗传算法解决多元函数的优化问题””的相关文章,希望咱们能喜欢,兄弟们一起来学习一下吧!许多学习算法的开发者在刷题或者练习的过程中都会遇到启发式算法,如果你恰好也正在学习算法,那么今天 Gitee 介绍的这款开源项目一定能对你的学习过程有所帮助,帮你更好的理解启发式算法。
启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的 最优解 。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。
项目名称:scikit-opt
项目作者:guofei9987
开源许可协议:MIT
项目地址:
项目简介
该项目是一个封装了7种启发式算法的 Python 代码库,包含了差分进化算法、遗传算法、粒子群算法、模拟退火算法、蚁群算法、鱼群算法、免疫优化算法。
特性UDF(用户自定义算子)GPU 加速断点继续运行算法演示差分进化算法
1.定义你的问题
'''min f(x1, x2, x3) = x1^2 + x2^2 + x3^2s.t. x1*x2 >= 1 x1*x2 <= 5 x2 + x3 = 1 0 <= x1, x2, x3 <= 5'''def obj_func(p): x1, x2, x3 = p return x1 ** 2 + x2 ** 2 + x3 ** 2constraint_eq = [ lambda x: 1 - x[1] - x[2]]constraint_ueq = [ lambda x: 1 - x[0] * x[1], lambda x: x[0] * x[1] -
2.做差分进化算法
from sko.DE import DEde = DE(func=obj_func, n_dim=3, size_pop=50, max_iter=800, lb=[0, 0, 0], ub=[5, 5, 5], constraint_eq=constraint_eq, constraint_ueq=constraint_ueq)best_x, best_y = de.run()print('best_x:', best_x, '\n', 'best_y:', best_y遗传算法
1.定义你的问题
import numpy as npdef schaffer(p): ''' This function has plenty of local minimum, with strong shocks global minimum at (0,0) with value 0 ''' x1, x2 = p x = np.square(x1) + np.square(x2) return 0.5 + (np.sin(x) - 0.5) / np.square(1 + 0.001 * x
2.运行遗传算法
from sko.GA import GAga = GA(func=schaffer, n_dim=2, size_pop=50, max_iter=800, lb=[-1, -1], ub=[1, 1], precision=1e-7)best_x, best_y = ga.run()print('best_x:', best_x, '\n', 'best_y:', best_y)
3.用 matplotlib 画出结果
import pandas as pdimport matplotlib.pyplot as pltY_history = pd.DataFrame(ga.all_history_Y)fig, ax = plt.subplots(2, 1)ax[0].plot(Y_history.index, Y_history.values, '.', color='red')Y_history.min(axis=1).cummin().plot(kind='line')plt.show()粒子群算法
1.定义问题
def demo_func(x): x1, x2, x3 = x return x1 ** 2 + (x2 - 0.05) ** 2 + x3 ** 2
2.做粒子群算法
from sko.PSO import PSOpso = PSO(func=demo_func, dim=3, pop=40, max_iter=150, lb=[0, -1, 0.5], ub=[1, 1, 1], w=0.8, c1=0.5, c2=0.5)pso.run()print('best_x is ', pso.gbest_x, 'best_y is', pso.gbest_y)
3.画出结果
import matplotlib.pyplot as pltplt.plot(pso.gbest_y_hist)plt.show()模拟退火算法
模拟退火算法用于多元函数优化
1.定义问题
demo_func = lambda x: x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2
2.运行模拟退火算法
from sko.SA import SAsa = SA(func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, L=300, max_stay_counter=150)best_x, best_y = sa.run()print('best_x:', best_x, 'best_y', best_y)
3.画出结果
import matplotlib.pyplot as pltimport pandas as pdplt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))plt.show()
蚁群算法
蚁群算法(ACA, Ant Colony Algorithm)解决TSP问题
from sko.ACA import ACA_TSPaca = ACA_TSP(func=cal_total_distance, n_dim=num_points, size_pop=50, max_iter=200, distance_matrix=distance_matrix)best_x, best_y = aca.run(免疫优化算法
from sko.IA import IA_TSPia_tsp = IA_TSP(func=cal_total_distance, n_dim=num_points, size_pop=500, max_iter=800, prob_mut=0.2, T=0.7, alpha=0.95)best_points, best_distance = ia_tsp.run()print('best routine:', best_points, 'best_distance:', best_distance)人工鱼群算法
def func(x): x1, x2 = x return 1 / x1 ** 2 + x1 ** 2 + 1 / x2 ** 2 + x2 ** 2from sko.AFSA import AFSAafsa = AFSA(func, n_dim=2, size_pop=50, max_iter=300, max_try_num=100, step=0.5, visual=0.3, q=0.98, delta=0.5)best_x, best_y = afsa.run()print(best_x, best_
想要学习更多算法类开源项目?点击下方了解更多前往 Gitee 看看。
标签: #用遗传算法解决多元函数的优化问题 #现代启发式算法