龙空技术网

Java容器 | 基于源码分析List集合体系

知了一笑 265

前言:

而今咱们对“java解析list”大约比较关心,小伙伴们都想要学习一些“java解析list”的相关知识。那么小编在网摘上汇集了一些关于“java解析list””的相关知识,希望大家能喜欢,咱们快快来了解一下吧!

一、容器之List集合

List集合体系应该是日常开发中最常用的API,而且通常是作为面试压轴问题(JVM、集合、并发),集合这块代码的整体设计也是融合很多编程思想,对于程序员来说具有很高的参考和借鉴价值。

基本要点

基础:元素增查删、容器信息;进阶:存储结构、容量管理;

API体系

ArrayList:维护数组实现,查询快;Vector:维护数组实现,线程安全;LinkedList:维护链表实现,增删快;

核心特性包括:初始化与加载,元素管理,自动扩容,数组和链表两种数据结构。Vector底层基于ArrayList实现的线程安全操作,而ArrayList与LinkedList属于非线程安全操作,自然效率相比Vector会高,这个是通过源码阅读可以发现的特点。

二、ArrayList详解1、数组特点

ArrayList就是集合体系中List接口的具体实现类,底层维护Object数组来进行装载和管理数据:

private static final Object[] EMPTY_ELEMENTDATA = {};

提到数组结构,潜意识的就是基于元素对应的索引查询,所以速度快,如果删除元素,可能会导致大量元素移动,所以相对于LinkedList效率较低。

数组存储的机制:

数组属于是紧凑连续型存储,通过下标索引可以随机访问并快速找到对应元素,因为有预先开辟内存空间的机制,所以相对节约存储空间,如果数组一旦需要扩容,则重新开辟一块更大的内存空间,再把数据全部复制过去,效率会非常的低下。

2、构造方法

这里主要看两个构造方法:

无参构造器:初始化ArrayList,声明一个空数组。

public ArrayList() {    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;}

有参构造器:传入容量参数大于0,则设置数组的长度。

public ArrayList(int initialCapacity) {    if (initialCapacity > 0) {        this.elementData = new Object[initialCapacity];    } else if (initialCapacity == 0) {        this.elementData = EMPTY_ELEMENTDATA;    } else {        throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity);    }}

如果没通过构造方法指定数组长度,则采用默认数组长度,在添加元素的操作中会设置数组容量。

private static final int DEFAULT_CAPACITY = 10;
3、装载数据

通过上面的分析,可以知道数组是有容量限制的,但是ArrayList却可以一直装载元素,当然也是有边界值的,只是通常不会装载那么多元素:

private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

超过这个限制会抛出内存溢出的错误。

装载元素:会判断容量是否足够;

public boolean add(E e) {    ensureCapacityInternal(size + 1);    elementData[size++] = e;    return true;}

当容量不够时,会进行扩容操作,这里贴量化关键源码:

private void grow(int minCapacity) {    int oldCapacity = elementData.length;    int newCapacity = oldCapacity + (oldCapacity >> 1);    elementData = Arrays.copyOf(elementData, newCapacity);}

机制:计算新容量(newCapacity=15),拷贝一个新数组,设置容量为newCapacity。

指定位置添加:这个方法很少使用到,同样看两行关键代码;

public void add(int index, E element) {    ensureCapacityInternal(size + 1);    System.arraycopy(elementData, index,elementData,index+1,size-index);    elementData[index] = element;    size++;}

机制:判断数组容量,然后就是很直接的一个数组拷贝操作,简单来个图解:

如上图,假设在index=1位置放入元素E,按照如下过程运行:

获取数组index到结束位置的长度;拷贝到index+1的位置;原来index位置,放入element元素;

这个过程就好比排队,如果在首位插入一位,即后面的全部后退一位,效率自然低下,当然这里也并不是绝对的,如果移动的数组长度够小,或者一直在末尾添加,效率的影响自然就降低很多。

4、移除数据

上面看的数据装载,那与之相反的逻辑再看一下,依旧看几行关键源码:

public E remove(int index) {    E oldValue = elementData(index);    int numMoved = size - index - 1;    if (numMoved > 0) {        System.arraycopy(elementData, index+1, elementData, index, numMoved);    }    elementData[--size] = null;    return oldValue;}

机制:从逻辑上看,与添加元素的机制差不多,即把添加位置之后的元素拷贝到index开始的位置,这个逻辑在排队中好比前面离开一位,后面的队列整体都前进一位。

其效率问题也是一样,如果移除集合的首位元素,后面所有元素都要移动,移除元素的位置越靠后,效率影响就相对降低。

5、容量与数量

在集合的源码中,有两个关键字段需要明确一下:

capacity:集合的容量,装载能力;size:容器中装载元素的个数;

通常容器大小获取的是size,即装载元素个数,不断装载元素触发扩容机制,capacity容量才会改变。

三、LinkedList详解1、链表结构特点

链表结构存储在物理单元上非连续、非顺序,节点元素间的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列节点组成,节点可以在运行时动态生成,节点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。

特点描述

物理存储上是无序且不连续的;链表是由多个节点以链式结构组成;逻辑层面上看形成一个有序的链路结构;首节点没有指向上个节点的地址;尾节点没有指向下个节点的地址;

链表结构解决数组存储需要预先知道元素个数的缺陷,可以充分利用内存空间,实现灵活的内存动态管理。

2、LinkedList结构

LinkedList底层数据存储结构正是基于链表实现,首先看下节点的描述:

private static class Node<E> {    E item;    Node<E> next;    Node<E> prev;    Node(Node<E> prev, E element, Node<E> next) {        this.item = element;        this.next = next;        this.prev = prev;    }}

在LinkedList中定义静态类Node描述节点的结构:元素、前后指针。在LinkedList类中定义三个核心变量:

transient int size = 0;transient Node<E> first;transient Node<E> last;

即大小,首位节点,关于这个三个变量的描述在源码的注释上已经写的非常清楚了:

首节点上个节点为null,尾节点下个节点为null,并且item不为null。

3、元素管理

LinkedList一大特点即元素增加和删除的效率高,根据链表的结构特点来看源码。

添加元素

通过源码可以看到,添加元素时实际调用的是该方法,把新添加的元素放在原链表最后一位:

void linkLast(E e) {    final Node<E> l = last;    final Node<E> newNode = new Node<>(l, e, null);    last = newNode;    if (l == null)        first = newNode;    else        l.next = newNode;    size++;    modCount++;}

结合Node类的构造方法,实际的操作如下图:

核心的逻辑即:新的尾节点和旧的尾节点构建指针关系,并处理首位节点变量。

删除元素

删除元素可以根据元素对象或者元素index删除,最后核心都是执行unlink方法:

E unlink(Node<E> x) {    final E element = x.item;    final Node<E> next = x.next;    final Node<E> prev = x.prev;    if (prev == null) {        first = next;    } else {        prev.next = next;        x.prev = null;    }    if (next == null) {        last = prev;    } else {        next.prev = prev;        x.next = null;    }    x.item = null;    size--;    modCount++;    return element;}

与添加元素核心逻辑相似,也是一个重新构建节点指针的过程:

两个if判断是否删除的是首位节点;删除节点的上个节点的next指向删除节点的next节点;删除节点的下个节点的prev指向删除节点的prev节点;

通过增删方法的源码分析,可以看到LinkedList对元素的增删并不会涉及大规模的元素移动,影响的节点非常少,效率自然相对ArrayList高很多。

4、查询方法

基于链表结构存储而非数组,对元素查询的效率会有很大影响,先看源码:

public E get(int index) {    checkElementIndex(index);    return node(index).item;}Node<E> node(int index) {    if (index < (size >> 1)) {        Node<E> x = first;        for (int i = 0; i < index; i++)            x = x.next;        return x;    } else {        Node<E> x = last;        for (int i = size - 1; i > index; i--)            x = x.prev;        return x;    }}

这段源码结合LinkedList结构看,真的是极具策略性:

首先是对index的合法性校验;然后判断index在链表的上半段还是下半段;如果在链表上半段:从first节点顺序遍历;如果在链表下半段:从last节点倒序遍历;

通过上面的源码可以看到,查询LinkedList中靠中间位置的元素,需要执行的遍历的次数越多,效率也就越低,所以LinkedList相对更适合查询首位元素。

推荐阅读:GitHub源码和分类管理,持续更新

Java基础篇:日期与时间API用法详解

Java基础篇:函数式编程概念和应用

Java基础篇 | 基本数据类型,核心点整理

Java基础篇 | 流程控制语句,和算法应用

Java基础篇 | 特殊的String类,和相关扩展API

标签: #java解析list