龙空技术网

hive内外表、分区表以及数据导入导出相关操作

架构修炼者 157

前言:

眼前小伙伴们对“hive 导出文件”大概比较注重,各位老铁们都需要学习一些“hive 导出文件”的相关知识。那么小编也在网摘上网罗了一些有关“hive 导出文件””的相关知识,希望咱们能喜欢,你们一起来了解一下吧!

内部表和外部表区别

内部表:删除表时,既会删除表结构,也会删除表数据。

外部表:删除表时,只会删除表结构,表数据不删除,外部表用的比较多。

查看表类型语句

语句:desc formatted 表名;Table Type:          MANAGED_TABLE
内外表转换
转换成外部表:alter table test set tblproperties('EXTERNAL'='TRUE');转换成内部表:alter table test set tblproperties('EXTERNAL'='FALSE');

注意:('EXTERNAL'='TRUE')和('EXTERNAL'='FALSE')为固定写法,区分大小写!

建表指定字段分隔符

脚本: row format delimited fields terminated by ','#例如: 创建表create table test1 (id int, name string)row format delimitedfields terminated by ',';#插入数据insert into test1 values(110, '哈哈哈');
修改/新增/替换列修改列ALTER TABLE table_name CHANGE [COLUMN] col_old_name col_new_name

column_type [COMMENT col_comment] [FIRST|AFTER column_name]

例如:

hive (hive)> desc test1;

col_name data_type comment

id int

name string

hive (hive)> alter table test1 change id stu_id string;

hive (hive)> desc test1;

col_name data_type comment

stu_id string

name string新增/替换列ALTER TABLE table_name ADD|REPLACE COLUMNS (col_name data_type [COMMENT

col_comment], ...)

例: 新增列

hive (hive)> desc test1

col_name data_type comment

stu_id string

name string

hive (hive)> alter table test1 add columns (no string);

hive (hive)> desc test1;

col_name data_type comment

stu_id string

name string

no string

例: 替换列

hive (hive)> alter table test1 replace columns (id string, name string);注:ADD 是代表新增一字段,字段位置在所有列后面(partition 列前), REPLACE 则是表示替换表中所有字段, 类型问题。数据导入表存在-load导入方式(overwrite是删除在添加)语法:load data [local] inpath '数据的 path' [overwrite] into table

student [partition (partcol1=val1,…)];例:

# 1. 创建表

hive (default)> create table test1(id string, name string) row format delimited fields terminated by ',';

# 2. 准备测试文件test1.txt

1001,xiaomi

1002,xiaoli

# 3. 本地load导入hive

hive (default)> load data local inpath '/usr/local/hive/test1.txt' into table test1;

# 4. 从hdfs上,load覆盖导入hive

hadoop fs -put test1.txt /

load data inpath '/test1.txt' overwrite into table test1;表存在-insert导入方式语法:

1. insert into 表名 values(),();

2. insert into 表名 select 字段名/* from 表名

3. insert overwrite table 表名 select 字段名/* from 表名建表时-as select导入方式create table test3 as select id,name from test2;建表时-指定location导入方式 (hdfs上的文件夹,不是文件)# 1. hdfs上创建文件夹

hadoop fs -mkdir /test2

# 2. 上传文件到hdfs上

hadoop fs -put test2.txt /test2

# 3. 建表指定location导入数据

hive (default)> create table test4 (id string, name string) row format delimited fields terminated by ',' location '/test2';数据导出inser导出到本地和hdfs方式语法:

insert overwrite [local] directory 路径

row format delimited fields terminated by ','

select * from 表名;

例:导出到本地文件夹

hive (default)> insert overwrite local directory '/usr/local/hive/student' row format delimited fields terminated by ',' select * from test4;

例:导出到hdfs文件夹

hive (default)> insert overwrite directory '/student' row format delimited fields terminated by ',' select * from test4;hadoop命令导出到本地(get命令)hadoop fs -get '/user/hive/warehouse/test3/000000_0' /tmp/1.txthive shell 命令导出到本地hive -e 'select * from default.test4' > /tmp/2.txt;exprot/import导出导入hdfs上# 导出到hdfs的文件夹

hive (default)> export table test4 to '/ss/test4';

# 从hdfs的文件夹导入到表,test5可以是不存在的表,或者空表。但是不能有数据

hive (default)> import table test5 from '/ss/test4';排序4个by总结order by :全局排序,只有一个reducer。Sort By(每个 Reduce 内部排序):Sort By:对于大规模的数据集 order by 的效率非常低。在很多情况下,并不需要全局排 序,此时可以使用 sort by。 Sort by 为每个 reducer 产生一个排序文件。每个 Reducer 内部进行排序,对全局结果集 来说不是排序。设置 reduce 个数0: jdbc:hive2://nn:10000> set mapreduce.job.reduces=3;查看设置 reduce 个数0: jdbc:hive2://nn:10000> set mapreduce.job.reduces;根据部门编号降序查看员工信息0: jdbc:hive2://nn:10000> select * from emp sort by deptno desc;将查询结果导入到文件中(按照部门编号降序排序),查看文件0: jdbc:hive2://nn:10000> insert overwrite local directory '/usr/local/hive/emp' row format delimited fields terminated by ' ' select * from emp sort by deptno desc;Distribute By(分区)Distribute By: 在有些情况下,我们需要控制某个特定行应该到哪个 reducer,通常是为 了进行后续的聚集操作。distribute by 子句可以做这件事。distribute by 类似 MR 中 partition (自定义分区),进行分区,结合 sort by 使用。 对于 distribute by 进行测试,一定要分配多 reduce 进行处理,否则无法看到 distribute by 的效果。0: jdbc:hive2://nn:10000> set mapreduce.job.reduces=3;

0: jdbc:hive2://nn:10000> insert overwrite local directory '/usr/local/hive/emp' select * from emp distribute by deptno sort by empno desc;注意:distribute by 的分区规则是根据分区字段的 hash 码与 reduce 的个数进行模除后, 余数相同的分到一个区。Hive 要求 DISTRIBUTE BY 语句要写在 SORT BY 语句之前。Cluster By当 distribute by 和 sorts by 字段相同时,可以使用 cluster by 方式。 cluster by 除了具有 distribute by 的功能外还兼具 sort by 的功能。但是排序只能是升序 排序,不能指定排序规则为 ASC 或者 DESC。准备测试数据# 1. dept.txt文件

10,ACCOUNTING,1700

20,RESEARCH,1800

30,SALES,1900

40,OPERATIONS,1700

# 2. emp.txt文件

7369,SMITH,CLERK,7902,1980-12-17,800.0,20.0,20

7499,ALLEN,SALESMAN,7698,1981-2-20,1600.0,300.0,30

7521,WARD,SALESMAN,7698,1981-2-22,1250.0,500.0,10

7566,JONES,MANAGER,7839,1981-4-2,2975.0,20.0,40

7654,MARTIN,SALESMAN,7698,1981-9-28,1250.0,1400.0,10

7698,BLAKE,MANAGER,7839,1981-5-1,2850.0,30.0,20

7782,CLARK,MANAGER,7839,1981-6-9,2450.0,10.0,30

7788,SCOTT,ANALYST,7566,1987-4-19,3000.0,20.0,40

7839,KING,PRESIDENT,7566,1987-4-19,10.0,20.0,30

7844,TURNER,SALESMAN,7698,1981-9-8,1500.0,0.0,20

7876,ADAMS,CLERK,7788,1987-5-23,1100.0,20.0,30

7900,JAMES,CLERK,7698,1981-12-3,950.0,30.0,20

7902,FORD,ANALYST,7566,1981-12-3,3000.0,20.0,10

7934,MILLER,CLERK,7782,1982-1-23,1300.0,10.0,30

# 3. 建dept、emp表

hive (default)> create table dept (deptno int, dname string, loc int) row format delimited fields terminated by ',';

hive (default)> load data local inpath '/usr/local/hive/company/dept.txt' into table dept;

hive (default)> create table if not exists emp(

empno int,

ename string,

job string,

mgr int,

hiredate string,

sal double,

comm double,

deptno int)

row format delimited fields terminated by ',';

hive (default)> load data local inpath '/usr/local/hive/company/emp.txt' into table emp;分区表(隔离数据和优化查询)创建分区表(partitioned by)create table dept_par(deptno string, dname string, loc string) partitioned by (day string) row format delimited fields terminated by ',';

注意:分区字段不能是表中已经存在的数据,可以将分区字段看作表的伪列。加载数据到分区表# 1. 准备测试数据

dept_20210909.txt

10,ACCOUNTING,1700

20,RESEARCH,1800

dept_20210910.txt

30,SALES,1900

40,OPERATIONS,1700

dept_20210911.txt

50,TEST,2000

60,DEV,1900

# 2. 导入数据到分区表

load data local inpath '/opt/data/partition/dept_20210909.txt' into table dept_par partition(day='20210909');

load data local inpath '/opt/data/partition/dept_20210910.txt' into table dept_par partition(day='20210910');

load data local inpath '/opt/data/partition/dept_20210911.txt' into table dept_par partition(day='20210911');查看分区表数据# 1. 单分区查询

select * from dept_par where day='20210909';

# 2. 多分区查询(union/or)

select * from dept_par where day='20210909'

union

select * from dept_par where day='20210910';

select * from dept_par where day='20210909' or day='20210911';增加分区alter table dept_par add partition(day='20210912') partition(day='20210913');删除分区(partition之间的逗号)alter table dept_par drop partition(day='20210912'),partition(day='20210913');查看分区show partitions dept_par;创建多级分区# 1. 创建多级分区

create table dept_par2 (deptno string, dname string, loc string) partitioned by (day string, hour string) row format delimited fields terminated by ',';

# 2. 加载数据到分区

load data local inpath '/opt/data/partition/dept_20210909.txt' into table dept_par2 partition(day='20210909', hour='13');上传数据到hdfs上分区目录,分区表与数据关联的3种方式(缺少分区元数据)# 1. 上传数据后修复

hadoop fs -mkdir /user/hive/warehouse/dept_par3/day=20210909

hadoop fs -put dept_20210909.txt /user/hive/warehouse/dept_par3/day=20210909/

msck repair table dept_par3;

# 2. 上传数据后添加分区

hadoop fs -mkdir /user/hive/warehouse/dept_par3/day=20210910

hadoop fs -put dept_20210909.txt /user/hive/warehouse/dept_par3/day=20210910/

alter table dept_par3 add partition(day='20210910');

# 3. 创建分区文件夹后,load数据到分区

hadoop fs -mkdir /user/hive/warehouse/dept_par3/day=20210911

load data local inpath '/opt/data/partition/dept_20210911.txt' into table dept_par3 partition(day='20210911');动态分区# 1. 开启动态分区功能(默认 true,开启)

hive.exec.dynamic.partition=true

# 2. 设置为非严格模式(动态分区的模式,默认 strict,表示必须指定至少一个分区为静态分区,nonstrict 模式表示允许所有的分区字段都可以使用动态分区。)

hive.exec.dynamic.partition.mode=nonstrict

# 3. 在所有执行 MR 的节点上,最大一共可以创建多少个动态分区。默认 1000

hive.exec.max.dynamic.partitions=1000

# 4. 在每个执行 MR 的节点上,最大可以创建多少个动态分区。该参数需要根据实际的数据来设定。比如:源数据中包含了一年的数据,即 day 字段有 365 个值,那么该参数就需要设置成大于 365,如果使用默认值 100,则会报错。

hive.exec.max.dynamic.partitions.pernode=100

# 5. 整个 MR Job 中,最大可以创建多少个 HDFS 文件。默认 100000

hive.exec.max.created.files=100000

# 6. 当有空分区生成时,是否抛出异常。一般不需要设置。默认 false

hive.error.on.empty.partition=false

例:

# 导入数据,动态分区

insert into table dept_par4 partition(day) select deptno,dname,loc from dept_par3;

# 不写partition(day),hive3新特性

insert into table dept_par4 select deptno,dname,loc from dept_par3;分桶表

分区针对的是数据的存储路径;分桶针对的是数据文件。配合抽样算法

# 1. 创建分桶表create table stu_buck(id int, name string) clustered by(id) into 4 buckets row format delimited fields terminated by ',';
问题汇总遇到的问题问题1: java.lang.NoSuchMethodError: com.google.common.base.Preconditions.checkArgument(ZLjava/lang/String;Ljava/lang/Object;)V
[root@b76e475d5e8a hive]#bin/schematool -dbType derby -initSchemaException in thread "main" java.lang.NoSuchMethodError: com.google.common.base.Preconditions.checkArgument(ZLjava/lang/String;Ljava/lang/Object;)Vat org.apache.hadoop.conf.Configuration.set(Configuration.java:1357)at org.apache.hadoop.conf.Configuration.set(Configuration.java:1338)at org.apache.hadoop.mapred.JobConf.setJar(JobConf.java:536)at org.apache.hadoop.mapred.JobConf.setJarByClass(JobConf.java:554)at org.apache.hadoop.mapred.JobConf.<init>(JobConf.java:448)at org.apache.hadoop.hive.conf.HiveConf.initialize(HiveConf.java:5141)at org.apache.hadoop.hive.conf.HiveConf.<init>(HiveConf.java:5104)at org.apache.hive.beeline.HiveSchemaTool.<init>(HiveSchemaTool.java:96)at org.apache.hive.beeline.HiveSchemaTool.main(HiveSchemaTool.java:1473)at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke(Method.java:498)at org.apache.hadoop.util.RunJar.run(RunJar.java:323)at org.apache.hadoop.util.RunJar.main(RunJar.java:236)
# 解决guava.jar版本冲突(hadoop和hive)mv $HIVE_HOME/lib/guava-19.0.jar $HIVE_HOME/lib/guava-19.0.jar.bakcp $HADOOP_HOME/share/hadoop/common/lib/guava-27.0-jre.jar $HIVE_HOME/lib/

标签: #hive 导出文件 #hive从本地导入数据 #hive导入本地文件的命令 #hive 导出数据