龙空技术网

大数据学习连载04:Hadoop简史国内外应用、3.0新特性

传智教育官方账号 302

前言:

而今姐妹们对“java的hadoop”可能比较关切,看官们都想要剖析一些“java的hadoop”的相关知识。那么小编同时在网摘上汇集了一些对于“java的hadoop””的相关文章,希望朋友们能喜欢,咱们快快来学习一下吧!

本篇文章过长,大概6000+字数,全文干货无废话。分别给大家介绍一下Hadoop生态圈,并且Hadoop在国内国外互联网公司的应用场景和负责业务。后面也会给大家介绍Hadoop的各个发行版本和介绍。以及3.0版本的新特性是什么。附目录,望收藏随时观看。

一、Hadoop概述1.Hadoop介绍

Hadoop是Apache旗下的一个用java语言实现开源软件框架,是一个开发和运行处理大规模数据的软件平台。允许使用简单的编程模型在大量计算机集群上对大型数据集进行分布式处理。

狭义上说,Hadoop指Apache这款开源框架,它的核心组件有:

HDFS(分布式文件系统):解决海量数据存储

YARN(作业调度和集群资源管理的框架):解决资源任务调度

MAPREDUCE(分布式运算编程框架):解决海量数据计算

广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈

当下的Hadoop已经成长为一个庞大的体系,随着生态系统的成长,新出现的项目越来越多,其中不乏一些非Apache主管的项目,这些项目对HADOOP是很好的补充或者更高层的抽象。比如:

框架

用途

HDFS

分布式文件系统

MapReduce

分布式运算程序开发框架

ZooKeeper

分布式协调服务基础组件

HIVE

基于HADOOP的分布式数据仓库,提供基于SQL的查询数据操作

FLUME

日志数据采集框架

oozie

工作流调度框架

Sqoop

数据导入导出工具(比如用于mysql和HDFS之间)

Impala

基于hive的实时sql查询分析

Mahout

基于mapreduce/spark/flink等分布式运算框架的机器学习算法库

二、Hadoop发展简史

Hadoop是Apache Lucene创始人 Doug Cutting 创建的。最早起源于Nutch,它是Lucene的子项目。Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题:如何解决数十亿网页的存储和索引问题。

2003年Google发表了一篇论文为该问题提供了可行的解决方案。论文中描述的是谷歌的产品架构,该架构称为:谷歌分布式文件系统(GFS),可以解决他们在网页爬取和索引过程中产生的超大文件的存储需求。

2004年 Google发表论文向全世界介绍了谷歌版的MapReduce系统

同时期,以谷歌的论文为基础,Nutch的开发人员完成了相应的开源实现HDFS和MAPREDUCE,并从Nutch中剥离成为独立项目HADOOP,到2008年1月,HADOOP成为Apache顶级项目,迎来了它的快速发展期。

2006年Google发表了论文是关于BigTable的,这促使了后来的Hbase的发展。

因此,Hadoop及其生态圈的发展离不开Google的贡献。

三、Hadoop特性优点

扩容能力(Scalable):Hadoop是在可用的计算机集群间分配数据并完成计算任务的,这些集群可用方便的扩展到数以千计的节点中。

成本低(Economical):Hadoop通过普通廉价的机器组成服务器集群来分发以及处理数据,以至于成本很低。

高效率(Efficient):通过并发数据,Hadoop可以在节点之间动态并行的移动数据,使得速度非常快。

可靠性(Rellable):能自动维护数据的多份复制,并且在任务失败后能自动地重新部署(redeploy)计算任务。所以Hadoop的按位存储和处理数据的能力值得人们信赖。

四、Hadoop国内外应用

(1)Yahoo

Yahoo是Hadoop的最大支持者,Yahoo的Hadoop机器总节点数目已经超过42000个,有超过10万的核心CPU在运行Hadoop。最大的一个单Master节点集群有4500个节点(每个节点双路4核心CPUboxesw,4×1TB磁盘,16GBRAM)。总的集群存储容量大于350PB,每月提交的作业数目超过1000万个,在Pig中超过60%的Hadoop作业是使用Pig编写提交的。

Yahoo的Hadoop应用主要包括以下几个方面:

支持广告系统用户行为分析支持Web搜索反垃圾邮件系统个性化推荐

(2)Facebook

​主要用于存储内部日志的拷贝,作为一个源用于处理数据挖掘和日志统计。 主要使用了2个集群:一个由1100台节点组成的集群,包括8800核CPU(即每台机器8核),和12000TB的原始存储(即每台机器12T硬盘) 一个有300台节点组成的集群,包括2400核CPU(即每台机器8核),和3000TB的原始存储(即每台机器12T硬盘) 由此基础上开发了基于SQL语法的项目:HIVE 。

Facebook使用Hadoop集群的机器节点超过1400台,共计11200个核心CPU,超过15PB原始存储容量,每个商用机器节点配置了8核CPU,12TB数据存储,主要使用StreamingAPI和JavaAPI编程接口。Facebook同时在Hadoop基础上建立了一个名为Hive的高级数据仓库框架,Hive已经正式成为基于Hadoop的Apache一级项目。

(3)IBM

​IBM蓝云也利用Hadoop来构建云基础设施。IBM蓝云使用的技术包括:Xen和PowerVM虚拟化的Linux操作系统映像及Hadoop并行工作量调度,并发布了自己的Hadoop发行版及大数据解决方案。

五、Hadoop在国内应用的部分企业

(1)百度

​Hadoop集群规模达到近十个,单集群超过2800台机器节点,Hadoop机器总数有上万台机器,总的存储容量超过100PB,已经使用的超过74PB,每天提交的作业数目有数千个之多,每天的输入数据量已经超过7500TB,输出超过1700TB。

百度的Hadoop集群为整个公司的数据团队、大搜索团队、社区产品团队、广告团队,以及LBS团体提供统一的计算和存储服务,主要应用包括:

数据挖掘与分析日志分析平台数据仓库系统推荐引擎系统用户行为分析系统

(2)阿里巴巴

阿里巴巴的Hadoop集群大约有3200台服务器,大约30?000物理CPU核心,总内存100TB,总的存储容量超过60PB,每天的作业数目超过150?000个,每天hivequery查询大于6000个,每天扫描数据量约为7.5PB,每天扫描文件数约为4亿,存储利用率大约为80%,CPU利用率平均为65%,峰值可以达到80%。

Hadoop集群拥有150个用户组、4500个集群用户,为电子商务网络平台提供底层的基础计算和存储服务,主要应用包括:

数据平台系统搜索支撑电子商务数据推荐引擎系统搜索排行榜

(3)华为

华为对Hadoop做出贡献的公司之一,排在Google和Cisco的前面,华为对Hadoop的HA方案,以及HBase领域有深入研究,并已经向业界推出了自己的基于Hadoop的大数据解决方案。

(4)腾讯

TDW(Tencent distributed Data Warehouse,腾讯分布式数据仓库)基于开源软件Hadoop和Hive进行构建,打破了传统数据仓库不能线性扩展、可控性差的局限,并且根据腾讯数据量大、计算复杂等特定情况进行了大量优化和改造。

TDW服务覆盖了腾讯绝大部分业务产品,单集群规模达到4400台,CPU总核数达到10万左右,存储容量达到100PB;每日作业数100多万,每日计算量4PB,作业并发数2000左右;实际存储数据量80PB,文件数和块数达到6亿多;存储利用率83%左右,CPU利用率85%左右。经过四年多的持续投入和建设,TDW已经成为腾讯最大的离线数据处理平台。TDW的功能模块主要包括:Hive、MapReduce、HDFS、TDBank、Lhotse等。

六、Hadoop的历史版本和发行版公式1.Hadoop历史版本1.x版本系列:hadoop版本当中的第二代开源版本,主要修复0.x版本的一些bug等,该版本已被淘汰2.x版本系列:架构产生重大变化,引入了yarn平台等许多新特性,是现在使用的主流版本。3.x版本系列:对HDFS、MapReduce、YARN都有较大升级,还新增了Ozone key-value存储。2.社区版本

一、免费开源版本Apache:

优点:拥有全世界的开源贡献者,代码更新迭代版本比较快,

缺点:版本的升级,版本的维护,版本的兼容性,版本的补丁都可能考虑不太周到

Apache所有软件的下载地址(包括各种历史版本):

二、免费开源版本HortonWorks:

hortonworks主要是雅虎主导Hadoop开发的副总裁,带领二十几个核心成员成立Hortonworks,核心产品软件HDP(ambari),HDF免费开源,并且提供一整套的web管理界面,供我们可以通过web界面管理我们的集群状态,web管理界面软件HDF网址(),2018年,大数据领域的两大巨头公司Cloudera和Hortonworks宣布平等合并,Cloudera以股票方式收购Hortonworks,Cloudera股东最终获得合并公司60%的股份

3.收费版本

软件收费版本Cloudera:

cloudera主要是美国一家大数据公司在apache开源hadoop的版本上,通过自己公司内部的各种补丁,实现版本之间的稳定运行,大数据生态圈的各个版本的软件都提供了对应的版本,解决了版本的升级困难,版本兼容性等各种问题

在本课程中使用的是Apache版的Hadoop,版本号为:3.1.4。

七、Hadoop架构

1.Hadoop 3.x的版本架构和模型介绍

由于Hadoop 2.0是基于JDK 1.7开发的,而JDK 1.7在2015年4月已停止更新,这直接迫使Hadoop社区基于JDK 1.8重新发布一个新的Hadoop版本,即hadoop 3.0。Hadoop 3.0中引入了一些重要的功能和优化,包括HDFS 可擦除编码、多Namenode支持、MR Native Task优化、YARN基于cgroup的内存和磁盘IO隔离、YARN container resizing等。

Apache hadoop 项目组最新消息,hadoop3.x以后将会调整方案架构,将Mapreduce 基于内存+io+磁盘,共同处理数据。改变最大的是hdfs,hdfs 通过最近block块计算,根据最近计算原则,本地block块,加入到内存,先计算,通过IO,共享内存计算区域,最后快速形成计算结果,比Spark快10倍。

2.Hadoop3.0新特性

Hadoop 3.0在功能和性能方面,对hadoop内核进行了多项重大改进,主要包括:

(1)通用性

1.精简Hadoop内核,包括剔除过期的API和实现,将默认组件实现替换成最高效的实现。

Classpath isolation:以防止不同版本jar包冲突

3.Shell脚本重构: Hadoop 3.0对Hadoop的管理脚本进行了重构,修复了大量bug,增加了新特性。

(2)HDFS

Hadoop3.x中Hdfs在可靠性和支持能力上作出很大改观:

1.HDFS支持数据的擦除编码,这使得HDFS在不降低可靠性的前提下,节省一半存储空间。

2.多NameNode支持,即支持一个集群中,一个active、多个standby namenode部署方式。注:多ResourceManager特性在hadoop 2.0中已经支持。

HDFS纠删码

在Hadoop3.X中,HDFS实现了Erasure Coding这个新功能。Erasure coding纠删码技术简称EC,是一种数据保护技术.最早用于通信行业中数据传输中的数据恢复,是一种编码容错技术。

它通过在原始数据中加入新的校验数据,使得各个部分的数据产生关联性。在一定范围的数据出错情况下,通过纠删码技术都可以进行恢复。

hadoop-3.0之前,HDFS存储方式为每一份数据存储3份,这也使得存储利用率仅为1/3,hadoop-3.0引入纠删码技术(EC技术),实现1份数据+0.5份冗余校验数据存储方式。

与副本相比纠删码是一种更节省空间的数据持久化存储方法。标准编码(比如Reed-Solomon(10,4))会有1.4 倍的空间开销;然而HDFS副本则会有3倍的空间开销。

支持多个NameNodes

最初的HDFS NameNode high-availability实现仅仅提供了一个active NameNode和一个Standby NameNode;并且通过将编辑日志复制到三个JournalNodes上,这种架构能够容忍系统中的任何一个节点的失败。

然而,一些部署需要更高的容错度。我们可以通过这个新特性来实现,其允许用户运行多个Standby NameNode。比如通过配置三个NameNode和五个JournalNodes,这个系统可以容忍2个节点的故障,而不是仅仅一个节点。

​​​​​​​(3)MapReduce

Hadoop3.X中的MapReduce较之前的版本作出以下更改:

1.Tasknative优化:为MapReduce增加了C/C++的map output collector实现(包括Spill,Sort和IFile等),通过作业级别参数调整就可切换到该实现上。对于shuffle密集型应用,其性能可提高约30%。

2.MapReduce内存参数自动推断。在Hadoop 2.0中,为MapReduce作业设置内存参数非常繁琐,一旦设置不合理,则会使得内存资源浪费严重,在Hadoop3.0中避免了这种情况。

Hadoop3.x中的MapReduce添加了Map输出collector的本地实现,对于shuffle密集型的作业来说,这将会有30%以上的性能提升。

​​​​​​​(4)其他

默认端口更改

在hadoop3.x之前,多个Hadoop服务的默认端口都属于Linux的临时端口范围(32768-61000)。这就意味着用户的服务在启动的时候可能因为和其他应用程序产生端口冲突而无法启动。

现在这些可能会产生冲突的端口已经不再属于临时端口的范围,这些端口的改变会影响NameNode, Secondary NameNode, DataNode以及KMS。与此同时,官方文档也进行了相应的改变,具体可以参见 HDFS-9427以及HADOOP-12811。

Namenode ports: 50470 --> 9871, 50070--> 9870, 8020 --> 9820

Secondary NN ports: 50091 --> 9869,50090 --> 9868

Datanode ports: 50020 --> 9867, 50010--> 9866, 50475 --> 9865, 50075 --> 9864

Kms server ports: 16000 --> 9600 (原先的16000与HMaster端口冲突)

YARN 资源类型

YARN 资源模型(YARN resource model)已被推广为支持用户自定义的可数资源类型(support user-defined countable resource types),不仅仅支持 CPU 和内存。

比如集群管理员可以定义诸如 GPUs、软件许可证(software licenses)或本地附加存储器(locally-attached storage)之类的资源。YARN 任务可以根据这些资源的可用性进行调度。

标签: #java的hadoop