龙空技术网

代几综合题4例

几何滋味 112

前言:

而今姐妹们对“abcd都是短周期元素原子半径dcab”大致比较关心,姐妹们都想要分析一些“abcd都是短周期元素原子半径dcab”的相关知识。那么小编在网络上汇集了一些关于“abcd都是短周期元素原子半径dcab””的相关知识,希望小伙伴们能喜欢,看官们一起来了解一下吧!

介绍4例代几综合题的解题过程,供大家参考。

题目1:图1,在三角形ABC中,∠BAC=90°,AB=AC,P为BC上一点,求证PB²+PC²=2PA²。

解题过程:过A点作BC的垂线,垂足为M,BM=MC=MA。设BM=x,PC=y,则MP=x-y,MA=MC=x,PB=2x-y。

在Rt△AMP中,PA²=MA ²+MP²=x²+(x-y) ²=2x ²-2xy+y ²。

2 PA²=4x ²-4xy+2y ²=(2x)²-4xy+y ²+y ²

=(2x-y)²+y ²=PB ²+PC ²。

题目2:在直角三角形ABC中,∠BAC=90°,以AB、AC为边向三角形外分别作等边三角形ABD和ACE,连接DC、BE。设AB=x,AC=y,求DC·BE的值。

解题思路:如图2,连接DE,M为EC的中点,连接AM。∠DAE=∠DAC=∠BAE=150°。在△DAE、△DAC、△BAE中,两个等边三角形组成各边,故△DAE≌△DAC≌△BAE,DE=DC=BE。题目要求DC·BE的值,可以转化为求DE ²值。

我们知道,∠DAE=360°-60°-90°-60°=150°,∠EAM=30°,∠DAE+∠EAM=180°,D、A、M三点共线,DM⊥CE。

在Rt△DME中,EM=1/2y,DM=DA+AM=x+1/2y√3。

DE ²=EM ²+DM ²=(1/2y)²+(x+1/2y√3)²。

DE ²=x ²+y ²+√3 xy

DC·BE= DE ²=x ²+y ²+√3 xy

题目3:如图3,在正方形ABCD中,以A为圆心,AB为半径作1/4圆,E为弧DB上一点,∠DEC=135°,求S△DEC与正方形ABCD面积之比是多少?

解题思路:如上图,FB为圆直径,连接FD、FC,圆周角DEF=1/2圆心角DAF=45°,

∠DEC+∠DEF=135°+45°=180°,故C、E、F三点共线。在△DEC和△FDC中,∠DCE为共角,弦切角CDE=∠DFC,△DEC∽△FDC。

设正方形边长为x,正方形面积为x²。

FC²=x²+(2x)²=5x²

S△DFC=1/2 x²

根据相似三角形面积比等于相似比的平方可得:S△DEC/ S△DFC=(DC/ FC)²=(x ²/5 x ²)=1/5

S△DEC/ S△DFC= S△DEC/1/2 x²=1/5

S△DEC/ x²=1/10

即三角形DEC与正方形ABCD面积比为1/10。

题目4:如图4所示,在三角形ABC中,点D是线段BC上的一点,连接AD。求证:

AB²·DC+AC²·BD-AD²·BC=BC·DC·BD。

解题思路:过A点作AH⊥BC于H,在Rt△AHD和Rt△AHC中,根据勾股定理得:

AC²-HC²=AD²-DH²

AC²=AD²+HC²-DH²=AD²+(HC+DH)(HC-DH)= AD²+DC(HC-DH)= AD²+DC(DC-2DH)

AC²=AD²+DC ²-2DC·DH ①

用BD乘①式两边得:AC²·BD = AD²·BD +DC ²·BD -2DC·DH·BD ②

同理,在Rt△AHD和Rt△AHB中,根据勾股定理得:

AB ²-BH ²=AD ²-DH ²

AB ²=AD ²+BD ²+2DH·BD ③

用DC乘③式两边得:AB ²·DC = AD ²·DC +BD ²·DC +2DH·BD·DC ④

由②+④得:

AC²·BD+ AB ²·DC = AD²·BD +DC ²·BD -2DC·DH·BD + AD ²·DC +BD ²·DC +2DH·BD·DC= AD²·BD +DC ²·BD+ AD ²·DC +BD ²·DC

AB ²·DC+ AC²·BD= AD²(BD +DC)+ DC ·BD(DC+BD)= AD²·BC+ DC ·BD·BC

AB²·DC+AC²·BD-AD²·BC=BC·DC·BD。

该结论为斯特瓦尔特定理(Stewart定理),其证明过程稍显复杂,值得借鉴。

标签: #abcd都是短周期元素原子半径dcab