龙空技术网

LruCache带你彻底解析Android缓存机制

Android进阶技术分享 75

前言:

今天同学们对“android内存缓存”大体比较珍视,看官们都需要学习一些“android内存缓存”的相关知识。那么小编也在网上网罗了一些关于“android内存缓存””的相关文章,希望你们能喜欢,兄弟们一起来学习一下吧!

关于Android的三级缓存,其中主要的就是内存缓存和硬盘缓存。这两种缓存机制的实现都应用到了LruCache算法,今天我们就从使用到源码解析,来彻底理解Android中的缓存机制。

一、Android中的缓存策略

一般来说,缓存策略主要包含缓存的添加、获取和删除这三类操作。如何添加和获取缓存这个比较好理解,那么为什么还要删除缓存呢?这是因为不管是内存缓存还是硬盘缓存,它们的缓存大小都是有限的。当缓存满了之后,再想其添加缓存,这个时候就需要删除一些旧的缓存并添加新的缓存。

因此LRU(Least Recently Used)缓存算法便应运而生,LRU是近期最少使用的算法,它的核心思想是当缓存满时,会优先淘汰那些近期最少使用的缓存对象。采用LRU算法的缓存有两种:LrhCache和DisLruCache,分别用于实现内存缓存和硬盘缓存,其核心思想都是LRU缓存算法。

二、LruCache的使用

LruCache是Android 3.1所提供的一个缓存类,所以在Android中可以直接使用LruCache实现内存缓存。而DisLruCache目前在Android 还不是Android SDK的一部分,但Android官方文档推荐使用该算法来实现硬盘缓存。

1.LruCache的介绍

LruCache是个泛型类,主要算法原理是把最近使用的对象用强引用(即我们平常使用的对象引用方式)存储在 LinkedHashMap 中。当缓存满时,把最近最少使用的对象从内存中移除,并提供了get和put方法来完成缓存的获取和添加操作。

2.LruCache的使用

LruCache的使用非常简单,我们就已图片缓存为例。

int maxMemory = (int) (Runtime.getRuntime().totalMemory()/1024); int cacheSize = maxMemory/8; mMemoryCache = new LruCache<String,Bitmap>(cacheSize){ @Override protected int sizeOf(String key, Bitmap value) { return value.getRowBytes()*value.getHeight()/1024; } };

①设置LruCache缓存的大小,一般为当前进程可用容量的1/8。

②重写sizeOf方法,计算出要缓存的每张图片的大小。

注意:缓存的总容量和每个缓存对象的大小所用单位要一致。

三、LruCache的实现原理

LruCache的核心思想很好理解,就是要维护一个缓存对象列表,其中对象列表的排列方式是按照访问顺序实现的,即一直没访问的对象,将放在队尾,即将被淘汰。而最近访问的对象将放在队头,最后被淘汰。

如下图所示:

那么这个队列到底是由谁来维护的,前面已经介绍了是由LinkedHashMap来维护。

而LinkedHashMap是由数组+双向链表的数据结构来实现的。其中双向链表的结构可以实现访问顺序和插入顺序,使得LinkedHashMap中的<key,value>对按照一定顺序排列起来。

通过下面构造函数来指定LinkedHashMap中双向链表的结构是访问顺序还是插入顺序。

public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.accessOrder = accessOrder; }

其中accessOrder设置为true则为访问顺序,为false,则为插入顺序。

以具体例子解释:

当设置为true时

public static final void main(String[] args) { LinkedHashMap<Integer, Integer> map = new LinkedHashMap<>(0, 0.75f, true); map.put(0, 0); map.put(1, 1); map.put(2, 2); map.put(3, 3); map.put(4, 4); map.put(5, 5); map.put(6, 6); map.get(1); map.get(2); for (Map.Entry<Integer, Integer> entry : map.entrySet()) { System.out.println(entry.getKey() + ":" + entry.getValue()); } }

输出结果:

0:0

3:3

4:4

5:5

6:6

1:1

2:2

即最近访问的最后输出,那么这就正好满足的LRU缓存算法的思想。可见LruCache巧妙实现,就是利用了LinkedHashMap的这种数据结构。

下面我们在LruCache源码中具体看看,怎么应用LinkedHashMap来实现缓存的添加,获得和删除的。

public LruCache(int maxSize) { if (maxSize <= 0) { throw new IllegalArgumentException("maxSize <= 0"); } this.maxSize = maxSize; this.map = new LinkedHashMap<K, V>(0, 0.75f, true); }

从LruCache的构造函数中可以看到正是用了LinkedHashMap的访问顺序。

put()方法

public final V put(K key, V value) { //不可为空,否则抛出异常 if (key == null || value == null) { throw new NullPointerException("key == null || value == null"); } V previous; synchronized (this) { //插入的缓存对象值加1 putCount++; //增加已有缓存的大小 size += safeSizeOf(key, value); //向map中加入缓存对象 previous = map.put(key, value); //如果已有缓存对象,则缓存大小恢复到之前 if (previous != null) { size -= safeSizeOf(key, previous); } } //entryRemoved()是个空方法,可以自行实现 if (previous != null) { entryRemoved(false, key, previous, value); } //调整缓存大小(关键方法) trimToSize(maxSize); return previous; }

可以看到put()方法并没有什么难点,重要的就是在添加过缓存对象后,调用 trimToSize()方法,来判断缓存是否已满,如果满了就要删除近期最少使用的算法。

trimToSize()方法

public void trimToSize(int maxSize) { //死循环 while (true) { K key; V value; synchronized (this) { //如果map为空并且缓存size不等于0或者缓存size小于0,抛出异常 if (size < 0 || (map.isEmpty() && size != 0)) { throw new IllegalStateException(getClass().getName() + ".sizeOf() is reporting inconsistent results!"); } //如果缓存大小size小于最大缓存,或者map为空,不需要再删除缓存对象,跳出循环 if (size <= maxSize || map.isEmpty()) { break; } //迭代器获取第一个对象,即队尾的元素,近期最少访问的元素 Map.Entry<K, V> toEvict = map.entrySet().iterator().next(); key = toEvict.getKey(); value = toEvict.getValue(); //删除该对象,并更新缓存大小 map.remove(key); size -= safeSizeOf(key, value); evictionCount++; } entryRemoved(true, key, value, null); } }

trimToSize()方法不断地删除LinkedHashMap中队尾的元素,即近期最少访问的,直到缓存大小小于最大值。

当调用LruCache的get()方法获取集合中的缓存对象时,就代表访问了一次该元素,将会更新队列,保持整个队列是按照访问顺序排序。这个更新过程就是在LinkedHashMap中的get()方法中完成的。

先看LruCache的get()方法

get()方法

public final V get(K key) { //key为空抛出异常 if (key == null) { throw new NullPointerException("key == null"); } V mapValue; synchronized (this) { //获取对应的缓存对象 //get()方法会实现将访问的元素更新到队列头部的功能 mapValue = map.get(key); if (mapValue != null) { hitCount++; return mapValue; } missCount++; }

其中LinkedHashMap的get()方法如下:

public V get(Object key) { LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key); if (e == null) return null; //实现排序的关键方法 e.recordAccess(this); return e.value; }

调用recordAccess()方法如下:

void recordAccess(HashMap<K,V> m) { LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; //判断是否是访问排序 if (lm.accessOrder) { lm.modCount++; //删除此元素 remove(); //将此元素移动到队列的头部 addBefore(lm.header); } }

由此可见LruCache中维护了一个集合LinkedHashMap,该LinkedHashMap是以访问顺序排序的。当调用put()方法时,就会在结合中添加元素,并调用trimToSize()判断缓存是否已满,如果满了就用LinkedHashMap的迭代器删除队尾元素,即近期最少访问的元素。当调用get()方法访问缓存对象时,就会调用LinkedHashMap的get()方法获得对应集合元素,同时会更新该元素到队头。

以上便是LruCache实现的原理,理解了LinkedHashMap的数据结构就能理解整个原理。如果不懂,可以先看看LinkedHashMap的具体实现。

每天和大家分享和程序员有关的文章~促进大家一起学习和交流~加油吧程序员

标签: #android内存缓存