前言:
现时大家对“mysql外键关联”大概比较着重,我们都需要学习一些“mysql外键关联”的相关文章。那么小编在网上网罗了一些对于“mysql外键关联””的相关内容,希望大家能喜欢,同学们一起来学习一下吧!在Elasticsearch这样的分布式系统中执行类似SQL的join连接是代价是比较大的,然而,Elasticsearch却给我们提供了基于水平扩展的两种连接形式 。这句话摘自Elasticsearch官网,从“然而”来看,说明某些场景某些情况下我们还是可以使用的
一、join总述1、关系类比
在关系型数据库中,以MySQL为例,尤其B端类系统且数据量不是特别大的场景,我们经常用到join关键字对有关系的两张或者多张表进行关联查询。但是当数据量达到一定量级时,查询性能就是经常困扰的问题。由于es可以做到数亿量级的秒查(具体由分片数量决定),这时候把数据同步到es是我们可以使用解决方案之一。
那么不禁有疑问问了,由于业务场景的决定,之前必须关联查询的两张表还能做到进行关联吗?
答案是可以的,es也提供了类似于关系型数据库的关联查询,但是它又与关系型数据的关联查询有明显的区别与限制。
2、使用场景
如果把关系数据库原有关联的两张表,同步到es后,通常情况下,我们业务开发中会有两种查询诉求的场景
场景1
诉求:展示子表维度的明细数据(包含父表和子表中字段的条件)
方案:对于此种查询诉求,我们可以把原来关联的父子表打成父子表字段混合在一起的大宽表,既能满足查询条件,又有查询性能的保障,也是常用存储方案之一
场景2
诉求:展示父表维度的明细数据(包含父表和子表中字段的条件)
方案:然而,对于此种查询诉求,需要通过子表的条件来查询出父表的明细结果,场景1的宽表存储方案是子表明细数据,而最终我们要的是父表明细数据,显然对于场景1的存储方案是不能满足的。如果非要使用场景1的存储方案,我们还要对宽表结果进行一次groupby或者collapse操作来得到父表结果。
这个时候我们就可以使用es提供的join功能来完成场景2的诉求查询,同时它也满足场景1的诉求查询
3、使用限制
由于es属于分布式文档型数据库,数据自然是存在于多个分片之上的。Join字段自然不能像关系型数据库中的join使用。在es中为了保证良好的查询性能,最佳的实践是将数据模型设置为非规范化文档,通过字段冗余构造宽表,即存储在一个索引中。需要满足条件如下:
(1)父子文档(数据)必须存储在同一index中
(2)父子文档(数据)必须存储在同一个分片中,通过关联父文档ID关联
(3)一个index中只能包含一个join字段,但是可以有多个关系
(4)同一个index中,一个父关系可以对应多个子关系,一个子关系只对应一个父关系
4、性能问题
当然执行了join查询固然性能会受到一定程度的影响。对于带has_child/has_parent而言,其查询性能会随着指向唯一父文档的匹配子文档的数量增加而降低。本文开篇第一句摘自es官网描述,从ES官方的描述来看join关联查询对性能的损耗是比较大的。
不过,在笔者使用的过程中,在5个分片的前提下,且父表十万量级,子表数据量在千万量级的情况下,关联查询的耗时还是在100ms内完成的,对于B端许多场景还是可以接受的。
若有类似场景,建议我们在使用前,根据分片的多少和预估未来数据量的大小提前做好性能测试,防止以后数量达到一定程度时,性能有明显下降,那个时候再改存储方案得不偿失。
二、Mapping1、举例说明
这里以优惠券活动与优惠券明细为例,在一个优惠券活动中可以发放几千万的优惠券,所以券活动与券明细是一对多的关系。
券活动表字段
字段
说明
activity_id
活动ID
activity_name
活动名称
券明细表字段
字段
说明
coupon_id
券ID
coupon_amount
券面额
activity_id
外键-活动ID
2、mapping释义
join类型的字段主要用来在同一个索引中构建父子关联关系。通过relations定义一组父子关系,每个关系都包含一个父级关系名称和一个或多个子级关系名称
activity_coupon_field是一个关联字段,内部定义了一组join关系,该字段为自命名
type指定关联关系是join,固定写法
relations定义父子关系,activity父类型名称,coupon子类型名称,名称均为自命名
{ "mappings": { "properties": { "activity_coupon_field": { "type": "join", "relations": { "activity": "coupon" } }, "activity_id": { "type": "keyword" }, "activity_name": { "type": "keyword" }, "coupon_id": { "type": "long" }, "coupon_amount": { "type": "long" } } }}三、插入数据1、插入父文档
在put父文档数据的时候,我们通常按照某种规则指定文档ID,方便子文档数据变更时易于得到父文档ID。比如这里我们用activity_id的值:activity_100来作为父id
PUT /coupon/_doc/activity_100 { "activity_id": 100, "activity_name": "年货节5元促销优惠券", "activity_coupon_field": { "name": "activity" }}2、插入子文档
上边已经指定了父文档ID,而子表中已经包含有activity_id,所以很容易得到父文档ID
put子文档数据时候,必须指定父文档ID,就是父文档中的_id,这样父子数据才建立了关联关系。与此同时还要指定routing字段为父文档ID,这样保证了父子数据在同一分片上。
PUT /coupon/_doc/coupon_12345678?routing=activity_id_100 { "coupon_id": 12345678, "coupon_amount": "5", "activity_id": 100, "activity_coupon_field": { "name": "coupon", "parent": "activity_id_100" //父ID }}四、关联查询1、has_parent查询(父查子)
根据父文档条件字段查询符合条件的子文档数据
例如:查询包含“年货节”活动字样,且已经被领取过的券
{ "query": { "bool": { "must": [{ "parent_type": "activity", "has_parent": { "query": { "bool": { "must": [{ "term": { "status": { "value": 1 } } }, { "wildcard": { "activity_name": { "wildcard": "*年货节*" } } }] } } } }] } }}2、has_child查询(子查父)
根据子文档条件字段符合条件的父文档数据
例如:查询coupon_id=12345678在那个存在于哪个券活动中
{ "query": { "bool": { "must": [{ "has_child": { "type": "coupon", "query": { "bool": { "must": [{ "term": { "coupon_id": { "value": 12345678 } } }] } } } }] } }}
参考:Joining queries | Elasticsearch Guide [7.9] | Elastic
以上文中如有不正之处欢迎留言指正
作者:京东零售 李振乾
内容来源:京东云开发者社区