龙空技术网

计算机视觉项目-人脸识别与检测!入门必学!

AI人工智能知识库 308

前言:

今天各位老铁们对“特征点人脸识别算法研究”大概比较重视,你们都需要知道一些“特征点人脸识别算法研究”的相关资讯。那么小编也在网络上汇集了一些关于“特征点人脸识别算法研究””的相关文章,希望小伙伴们能喜欢,大家快快来学习一下吧!

文章目录项目介绍前言识别检测方法本文方法项目解析完整代码及效果展示

项目介绍前言

人脸识别作为一种生物特征识别技术,具有非侵扰性、非接触性、友好性和便捷性等优点。人脸识别通用的流程主要包括人脸检测、人脸裁剪、人脸校正、特征提取和人脸识别。人脸检测是从获取的图像中去除干扰,提取人脸信息,获取人脸图像位置,检测的成功率主要受图像质量,光线强弱和遮挡等因素影响。下图是整个人脸检测过程。

识别检测方法

传统识别方法

(1)基于点云数据的人脸识别(2)基于面部特征的3D人脸识别

深度学习识别方法

(1)基于深度图的人脸识别(2)基于RGB-3DMM的人脸识别(3)基于RGB-D的人脸识别

如果需要获取到【全套人工智能全套实战项目】的话帮忙转发、转发、转发一下然后再关注我私信回复“ 1 ”得到获取方式吧!

多多关注小编,持续分享编程学习干货!

本文方法

关键点定位概述

一般人脸中有5个关键点,其中包括眼睛两个,鼻子一个,嘴角两个。还可以细致的分为68个关键点,这样的话会概括的比较全面,我们本次研究就是68个关键点定位。

上图就是我们定位人脸的68个关键点,其中他的顺序是要严格的进行排序的。从1到68点的顺序不能错误。

项目解析

使用机器学习框架dlib做本次的项目。首先我们要指定参数时,要把dlib中的68关键点人脸定位找到。设置出来的68关键点人脸定位找到。并且设置出来。

from collections import OrderedDictimport numpy as npimport argparseimport dlibimport cv2

首先我们导入工具包。其中dlib库是通过这个网址进行下载的。然后我们导入参数。

ap = argparse.ArgumentParser()ap.add_argument("-p", "--shape-predictor", required=True,help="path to facial landmark predictor")ap.add_argument("-i", "--image", required=True,help="path to input image")args = vars(ap.parse_args())

这里我们要设置参数,

--shape-predictor shape_predictor_68_face_landmarks.dat --image images/lanqiudui.jpg。如果一张图像里面有多个人脸,那么我们分不同部分进行检测,裁剪出来所对应的ROI区域。我们的整体思路就是先检测人脸所在的一个区域位置,然后检测鼻子相对于人脸框所在的一个位置,比如说人的左眼睛在0.2w,0.2h的人脸框处。

FACIAL_LANDMARKS_68_IDXS = OrderedDict([("mouth", (48, 68)),("right_eyebrow", (17, 22)),("left_eyebrow", (22, 27)),("right_eye", (36, 42)),("left_eye", (42, 48)),("nose", (27, 36)),("jaw", (0, 17))])

这个是68个关键点定位的各个部位相对于人脸框的所在位置。分别对应着嘴,左眼、右眼、左眼眉、右眼眉、鼻子、下巴。

FACIAL_LANDMARKS_5_IDXS = OrderedDict([("right_eye", (2, 3)),("left_eye", (0, 1)),("nose", (4))])

如果是5点定位,那么就需要定位左眼、右眼、鼻子。0、1、2、3、4分别表示对应的5个点。

detector = dlib.get_frontal_face_detector()predictor = dlib.shape_predictor(args["shape_predictor"])

加载人脸检测与关键点定位。加载出来。其中detector默认的人脸检测器。然后通过传入参数返回人脸检测矩形框4点坐标。其中predictor以图像的某块区域为输入,输出一系列的点(point location)以表示此图像region里object的姿势pose。返回训练好的人脸68特征点检测器。

image = cv2.imread(args["image"])(h, w) = image.shape[:2]width=500r = width / float(w)dim = (width, int(h * r))image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

这里我们把数据读了进来,然后进行需处理,提取h和w,其中我们自己设定图像的w为500,然后按照比例同比例设置h。然后进行了resize操作,最后转化为灰度图。

rects = detector(gray, 1)

这里调用了detector的人脸框检测器,要使用灰度图进行检测,这个1是重采样个数。这里面返回的是人脸检测矩形框4点坐标。然后对检测框进行遍历

for (i, rect) in enumerate(rects):# 对人脸框进行关键点定位# 转换成ndarrayshape = predictor(gray, rect)shape = shape_to_np(shape)

这里面返回68个关键点定位。shape_to_np这个函数如下。

def shape_to_np(shape, dtype="int"):# 创建68*2coords = np.zeros((shape.num_parts, 2), dtype=dtype)# 遍历每一个关键点# 得到坐标for i in range(0, shape.num_parts):coords[i] = (shape.part(i).x, shape.part(i).y)return coords

这里shape_to_np函数的作用就是得到关键点定位的坐标。

for (name, (i, j)) in FACIAL_LANDMARKS_68_IDXS.items():clone = image.copy()cv2.putText(clone, name, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2)# 根据位置画点for (x, y) in shape[i:j]:cv2.circle(clone, (x, y), 3, (0, 0, 255), -1)# 提取ROI区域(x, y, w, h) = cv2.boundingRect(np.array([shape[i:j]]))roi = image[y:y + h, x:x + w](h, w) = roi.shape[:2]width=250r = width / float(w)dim = (width, int(h * r))roi = cv2.resize(roi, dim, interpolation=cv2.INTER_AREA)# 显示每一部分cv2.imshow("ROI", roi)cv2.imshow("Image", clone)cv2.waitKey(0)

这里字典FACIAL_LANDMARKS_68_IDXS.items()是同时提取字典中的key和value数值。然后遍历出来这几个区域,并且进行显示具体是那个区域,并且将这个区域画圆。随后提取roi区域并且进行显示。后面部分就是同比例显示w和h。然后展示出来。

output = visualize_facial_landmarks(image, shape)cv2.imshow("Image", output)cv2.waitKey(0)

最后展示所有区域。

其中visualize_facial_landmarks函数就是:

def visualize_facial_landmarks(image, shape, colors=None, alpha=0.75):# 创建两个copy# overlay and one for the final output imageoverlay = image.copy()output = image.copy()# 设置一些颜色区域if colors is None:colors = [(19, 199, 109), (79, 76, 240), (230, 159, 23),(168, 100, 168), (158, 163, 32),(163, 38, 32), (180, 42, 220)]# 遍历每一个区域for (i, name) in enumerate(FACIAL_LANDMARKS_68_IDXS.keys()):# 得到每一个点的坐标(j, k) = FACIAL_LANDMARKS_68_IDXS[name]pts = shape[j:k]# 检查位置if name == "jaw":# 用线条连起来for l in range(1, len(pts)):ptA = tuple(pts[l - 1])ptB = tuple(pts[l])cv2.line(overlay, ptA, ptB, colors[i], 2)# 计算凸包else:hull = cv2.convexHull(pts)cv2.drawContours(overlay, [hull], -1, colors[i], -1)# 叠加在原图上,可以指定比例cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)return output

这个函数是计算cv2.convexHull凸包的,也就是下图这个意思。

这个函数cv2.addWeighted是做图像叠加的。

src1, src2:需要融合叠加的两副图像,要求大小和通道数相等alpha:src1 的权重beta:src2 的权重gamma:gamma 修正系数,不需要修正设置为 0dst:可选参数,输出结果保存的变量,默认值为 Nonedtype:可选参数,输出图像数组的深度,即图像单个像素值的位数(如 RGB 用三个字节表示,则为 24 位),选默认值 None 表示与源图像保持一致。

dst = src1 × alpha + src2 × beta + gamma;上面的式子理解为,结果图像 = 图像 1× 系数 1+图像 2× 系数 2+亮度调节量。

完整代码及效果展示

from collections import OrderedDictimport numpy as npimport argparseimport dlibimport cv2ap = argparse.ArgumentParser()ap.add_argument("-p", "--shape-predictor", required=True,help="path to facial landmark predictor")ap.add_argument("-i", "--image", required=True,help="path to input image")args = vars(ap.parse_args())FACIAL_LANDMARKS_68_IDXS = OrderedDict([("mouth", (48, 68)),("right_eyebrow", (17, 22)),("left_eyebrow", (22, 27)),("right_eye", (36, 42)),("left_eye", (42, 48)),("nose", (27, 36)),("jaw", (0, 17))])FACIAL_LANDMARKS_5_IDXS = OrderedDict([("right_eye", (2, 3)),("left_eye", (0, 1)),("nose", (4))])def shape_to_np(shape, dtype="int"):# 创建68*2coords = np.zeros((shape.num_parts, 2), dtype=dtype)# 遍历每一个关键点# 得到坐标for i in range(0, shape.num_parts):coords[i] = (shape.part(i).x, shape.part(i).y)return coordsdef visualize_facial_landmarks(image, shape, colors=None, alpha=0.75):# 创建两个copy# overlay and one for the final output imageoverlay = image.copy()output = image.copy()# 设置一些颜色区域if colors is None:colors = [(19, 199, 109), (79, 76, 240), (230, 159, 23),(168, 100, 168), (158, 163, 32),(163, 38, 32), (180, 42, 220)]# 遍历每一个区域for (i, name) in enumerate(FACIAL_LANDMARKS_68_IDXS.keys()):# 得到每一个点的坐标(j, k) = FACIAL_LANDMARKS_68_IDXS[name]pts = shape[j:k]# 检查位置if name == "jaw":# 用线条连起来for l in range(1, len(pts)):ptA = tuple(pts[l - 1])ptB = tuple(pts[l])cv2.line(overlay, ptA, ptB, colors[i], 2)# 计算凸包else:hull = cv2.convexHull(pts)cv2.drawContours(overlay, [hull], -1, colors[i], -1)# 叠加在原图上,可以指定比例cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)return output# 加载人脸检测与关键点定位detector = dlib.get_frontal_face_detector()predictor = dlib.shape_predictor(args["shape_predictor"])# 读取输入数据,预处理image = cv2.imread(args["image"])(h, w) = image.shape[:2]width=500r = width / float(w)dim = (width, int(h * r))image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 人脸检测rects = detector(gray, 1)# 遍历检测到的框for (i, rect) in enumerate(rects):# 对人脸框进行关键点定位# 转换成ndarrayshape = predictor(gray, rect)shape = shape_to_np(shape)# 遍历每一个部分for (name, (i, j)) in FACIAL_LANDMARKS_68_IDXS.items():clone = image.copy()cv2.putText(clone, name, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2)# 根据位置画点for (x, y) in shape[i:j]:cv2.circle(clone, (x, y), 3, (0, 0, 255), -1)# 提取ROI区域(x, y, w, h) = cv2.boundingRect(np.array([shape[i:j]]))roi = image[y:y + h, x:x + w](h, w) = roi.shape[:2]width=250r = width / float(w)dim = (width, int(h * r))roi = cv2.resize(roi, dim, interpolation=cv2.INTER_AREA)# 显示每一部分cv2.imshow("ROI", roi)cv2.imshow("Image", clone)cv2.waitKey(0)# 展示所有区域output = visualize_facial_landmarks(image, shape)cv2.imshow("Image", output)cv2.waitKey(0)

最终将7个人的人脸都依次的检测到了。并且根据关键点定位到了。

支持:如果觉得小编的文章还不错或者您用得到的话,可以免费的关注一下小编,如果点赞收藏支持就更好啦!这就是给予我最大的支持!

标签: #特征点人脸识别算法研究 #人脸检测与定位 #人脸识别定位点