龙空技术网

MATLAB基础学习之矩阵的翻转与求逆

江城光影 120

前言:

目前你们对“矩阵求逆的方法”大概比较关怀,看官们都想要知道一些“矩阵求逆的方法”的相关内容。那么小编也在网络上汇集了一些关于“矩阵求逆的方法””的相关内容,希望姐妹们能喜欢,小伙伴们快快来了解一下吧!

矩阵的翻转变换与求逆矩阵的计算

矩阵的翻转:

fliplr(A):对矩阵A实施左右翻转;

flipud(A):对矩阵A实施上下翻转。

例:验证魔方阵的主对角线、副对角线元素之和相等。

>> A

A =

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

>> D1=diag(A);

>> sum(D1)

ans =

65

>> B=flipud(A);

>> D2=diag(B);

>> sum(D2)

ans =

65

矩阵的求逆:

对于一个方阵A,如果存在一个与其同阶的方阵B,使得AB=BA=I(I为单位矩阵),则称B为A的逆矩阵,当然,A也是B的逆矩阵。

inv(A):求方阵A的逆矩阵。

例如:用求逆矩阵的方法解线性方程组。

x+2y+3z=5

x+4y+9z=-2

x+8y+27z=6

分析:在线性方程组Ax=B两边各左乘A-1,有A-1Ax=A-1b,由于A-1A=I,故得x=A-1b。

解答:

>> A

A =

1 2 3

1 4 9

1 8 27

>> b=[5;-2;6]

b =

5

-2

6

>> x=inv(A)*b

x =

23.0000

-14.5000

3.6667

标签: #矩阵求逆的方法 #矩阵求逆的方法总结 #求b的逆矩阵 #matlab中矩阵变换 #matlab 矩阵变换