龙空技术网

Hash 一致性算法的 Java 实现

雾月空城 326

前言:

而今你们对“一致性哈希算法java”可能比较珍视,姐妹们都需要剖析一些“一致性哈希算法java”的相关资讯。那么小编也在网摘上网罗了一些有关“一致性哈希算法java””的相关资讯,希望小伙伴们能喜欢,各位老铁们快快来学习一下吧!

一致性hash算法,可以用在分布式缓存、数据库的分库分表、负载均衡算法等场景中

节点

import java.util.HashMap;import java.util.Map;/** * Created by weiyuan on 2020/07/06 */public class Node {        private String ip;    /**     * 节点存储数据     */    private Map<String,Object> data = new HashMap<String,Object>();    public Node(String ip) {        this.ip = ip;    }    public <T> void put(String key, T value) {        data.put(key, value);    }    public void remove(String key){        data.remove(key);    }    public <T> T get(String key) {        return (T) data.get(key);    }    public String getIp() {        return ip;    }    public void setIp(String ip) {        this.ip = ip;    }    public Map<String, Object> getData() {        return data;    }    public void setData(Map<String, Object> data) {        this.data = data;    }}

集群

import java.util.ArrayList;import java.util.List;/** * Created by weiyuan on 2020/07/06 */public abstract class Cluster {    protected List<Node> nodes;    public Cluster() {        this.nodes = new ArrayList<>();    }    public abstract void addNode(Node node);    public abstract void removeNode(Node node);    public abstract Node get(String key);    /**     * 这里选用FNV1_32_HASH算法,因String重写的hash算法会产生负数,     * 而且算出的hashCode值分布比较集中,数据分布不均匀     * @param str     * @return     */    public static int getHash(String str) {        final int p = 16777619;        int hash = (int) 2166136261L;        for (int i = 0; i < str.length(); i++)            hash = (hash ^ str.charAt(i)) * p;        hash += hash << 13;        hash ^= hash >> 7;        hash += hash << 3;        hash ^= hash >> 17;        hash += hash << 5;        // 如果算出来的值为负数则取其绝对值        if (hash < 0)            hash = Math.abs(hash);        return hash;    }}

取模算法

/** * Created by weiyuan on 2020/07/06 */public class NormalHashCluster extends Cluster {    public NormalHashCluster() {        super();    }    @Override    public void addNode(Node node) {        this.nodes.add(node);    }    @Override    public void removeNode(Node node) {        this.nodes.removeIf(o -> o.getIp().equals(node.getIp()));    }    @Override    /**     * 取模算法,求请求资源分发到哪个集群节点     */    public Node get(String key) {        long hash = getHash(key);        long index =  hash % nodes.size();        return nodes.get((int)index);    }}

Hash一致算法

import java.util.SortedMap;import java.util.TreeMap;import java.util.stream.IntStream;/** * Created by weiyuan on 2020/07/06 */public class ConsistencyHashCluster extends Cluster {    private SortedMap<Long, Node> virNodes = new TreeMap<Long, Node>();    private int virNodeCount;    private static final String SPLIT = "#";    public ConsistencyHashCluster(int virNodeCount) {        super();        this.virNodeCount = virNodeCount;    }    @Override    public void addNode(Node node) {        this.nodes.add(node);        IntStream.range(0, virNodeCount)                .forEach(index -> {                    long hash = getHash(node.getIp() + SPLIT + index);                    virNodes.put(hash, node);                });    }    @Override    public void removeNode(Node node) {        nodes.removeIf(o -> node.getIp().equals(o.getIp()));        IntStream.range(0, virNodeCount)                .forEach(index -> {                    long hash = getHash(node.getIp() + SPLIT + index);                    virNodes.remove(hash);                });    }    @Override    /**     * 虚拟节点算法,求请求资源分发到哪个集群节点     */    public Node get(String key) {        long hash = getHash(key);        SortedMap<Long, Node> subMap = hash >= virNodes.lastKey() ? virNodes.tailMap(0L) : virNodes.tailMap(hash);        if (subMap.isEmpty()) {            return null;        }        return subMap.get(subMap.firstKey());    }}

测试验证算法机器压力分布情况

import org.junit.Test;import java.util.stream.IntStream;/** * Created by weiyuan on 2020/07/06 */public class HashTest {    @Test    public void hashTest(){//        Cluster cluster = new NormalHashCluster();        Cluster cluster=new ConsistencyHashCluster(150);        cluster.addNode(new Node("192.168.0.1"));        cluster.addNode(new Node("192.168.0.2"));        cluster.addNode(new Node("192.168.0.3"));        cluster.addNode(new Node("192.168.0.4"));        IntStream.range(0, (int)(Math.pow(2,23) - 1))                .forEach(index -> {                    Node node = cluster.get("Test Data" + index);                    node.put("Test Data" + index, "Test Data");                });        System.out.println("数据分布情况:");        cluster.nodes.forEach(node -> {            System.out.println("IP:" + node.getIp() + ",数据量:" + node.getData().size());        });        //缓存命中率        long hitCount = IntStream.range(0, (int)(Math.pow(2,23) - 1))                .filter(index -> cluster.get("Test Data" + index).get("Test Data" + index) != null)                .count();        System.out.println("缓存命中率:" + hitCount * 1f / (int)(Math.pow(2,23) - 1));        cluster.addNode(new Node("192.168.0.5"));        long hitCount1 = IntStream.range(0, (int)(Math.pow(2,23) - 1))                .filter(index -> cluster.get("Test Data" + index).get("Test Data" + index) != null)                .count();        System.out.println("增加节点后缓存命中率:" + hitCount1 * 1f / (int)(Math.pow(2,23) - 1));    }}

取模

一致性(虚拟节点取150)



总结:通过采取虚拟节点的方法,一个真实结点不再固定在Hash换上的某个点,而是大量地分布在整个Hash环上,可以极大的提高缓存的命中率,减少在增加节点、删除节点时,数据迁移的成本。

标签: #一致性哈希算法java