龙空技术网

摄影之「芯」:CCD和CMOS,共同主宰数字影像世界

影像派 109

前言:

此时你们对“ccd25magnet”大致比较关心,看官们都想要学习一些“ccd25magnet”的相关文章。那么小编也在网上汇集了一些对于“ccd25magnet””的相关内容,希望大家能喜欢,咱们快快来了解一下吧!

文章原创首发于头条号【影像派】,版权所有,未经许可,不得转载。

请关注【影像派】

前言

提到CCD或CMOS,即使是摄影爱好者(进阶者除外)也可能会不知所云。但如果说「相机芯片」「影像传感器」「全画幅芯片」之类的,大家便会瞬间觉得熟悉很多。在不严谨讨论的情况下,我们大概可以认为CCD、CMOS和影像传感器就是一回事,但事实上它们并不等价,不能混为一谈。

并非影像君故弄玄虚,而是因为CCD和CMOS分别代表了两种主流的、不同设计、不同原理的影像传感器技术——这便是本文想要探讨的话题。我们不仅要讨论「是什么」(What),而且还要尝试讨论「如何」(How)和「为什么」(Why)。

「芯片」的话题很大,我们不妨先从半导体的概念开始说起。

一、半导体

「半导体」是一个相对导体和绝缘体而提出的概念,因此,我们有必要先了解一下何为导体和绝缘体。

1.1 导体、绝缘体

从「导电性」的角度而言,我们大致可将物体分为「导体」和「绝缘体」:前者导电,后者不导电。

是什么本质原因导致了两者在导电性能上的差异呢?这便不得不提「原子结构」的问题。

1913年,丹麦理论物理学家玻尔(Niels Bohr)在前辈卢瑟福(Ernest Rutherford)的研究基础上提出了「卢瑟福-玻尔原子模型」,如图1-1所示:

图1-1

理论认为,原子由带正电的原子核和带负电的电子组成,原子核又可细分为带正电的质子和不带电的中子,电子则处于原子核外的离散轨道上。电子距原子核越远(电子轨道越高),其受到的约束力越小。

该模型还从「能级」(energy level)的角度描述了电子的运动特性。电子所处的轨道越高,其能级也越高,反之亦然。最外层的轨道能级最高,通常用「价带」(valence band)来描述。当吸收能量时,电子受激发,从低能级(低轨道)向高能级(高轨道)迁跃(如图1-2所示)。

图1-2

若吸收的能量足够多,电子便能突破原子核的束缚,从价带跃迁至导电带(conduction band),成为可以自由游动的电子。自由电子越多,则物体导电性能越强。

1.2 半导体

半导体是一种介于导体和绝缘体之间的材料,在自然状态下,其导电性能接近于绝缘体,但只要有少量电子吸收了能量,便能跃迁至导电带,成为导体。

常见的半导体材料是在硅(Si)材料中掺杂其它元素,如磷(P)或硼(B)。三者在元素周期表中的位置相邻,它们有相近的原子结构——最外层的电子数分别为4、5、3。因此,当在硅材料中掺杂磷元素时,由于两两共价而达到稳定的电子层结构,每个磷原子会多出一个自由电子,这种提供自由电子(也称为「供体」)的半导体称为「N型半导体」(N为negative的缩写),如图1-3所示[1]:

图1-3

同理,当在硅材料中掺杂硼时,由于共价的关系,每个硼原子会多出一个呈正极的电子空位,称为电子穴(hole),这种有吸引电子(也称为「受体」)能力的材料称为「P型半导体」(P为positive的缩写),如图1-4所示:

图1-4

1.3 PN结

P型半导体和N型半导体整合在一起时,便形成了一个PN结,中间边界附近、束缚较弱的电子会自由移动并填充P型硅的电子穴,逐渐达到一种动态平衡,在中间形成了一个耗尽区(depletion area),如图1-5所示:

图1-5

当给两极施加反向偏压(即P侧加负电压,N侧加正电压)时,耗尽区增加,导电性能下降;当施加正向偏压(即P侧加正电压,N侧加负电压)时,耗尽区减少,导电性能上升。这种通过控制偏压达到单向导电的目标的元件,即为二极管。

二、数字影像之「芯」:CCD

1969年,美国贝尔实验室的两位科学家 Willard Boyle和George E. Smith发明了数字影像传感芯片——CCD。CCD的英文全称为Charge-Coupled Device,直译为「电荷耦合设备」。

2.1 CCD结构

根据CCD的结构,我们大致可将其分为上下两大部分:

光学滤镜和集成电路。

CCD芯片的表面是一系列光学滤镜组件,主要由抗红外线的微型透镜和拜耳彩色滤镜两部分组成,如图2-1所示:

图2-1

拜耳阵列(Bayer array)彩色滤镜是彩色成像的重要组件,它使用了RGB(红绿蓝)色彩模型。由于人眼对绿色的敏感度是红色和蓝色的两倍,因此绿色滤镜的数量是红色和蓝色的两倍。

滤镜下一层便是传感器集成电路。上面是数以千万计的像素(即感光单元),每一个像素均由4个(2个绿色滤镜、1个红色滤镜和1个蓝色滤镜)光电二极管构成。像素呈分层结构,从上至下依次为:多晶硅电极、二氧化硅、N型半导体和P型半导体。其横截面示意图如图2-2所示:

图2-2,Photo via MicroscopyU

2.2 CCD运行原理

继续看上面的图2-2。我们可以看到,PN结处有一个耗尽区,当施加反向电压(上为正极,下为负极)时,电子吸收了入射光的能量而跃迁成为了自由电子,存储于正电极下方所形成的电势井(potential well)中。若把电势井类比为杯子,光生电子(光电效应所产生的电子)则类似于杯子里的水。入射光越强,光生电子也越多,杯里的水便越多。

电压的开启与关闭由一系列的时序门电路控制,电势井会随着电压的改变而向邻近高电压处迁移,从而达到了电荷转移的目的。其动态示意图如图2-3所示:

图2-3

2.3 CCD的三种架构

CCD设计通常有三种架构:

帧转移(FT)、全帧(FF)和行间转移(IL)。

三种架构代表了三种不同的电荷转移方式,其示意图如图2-4所示(箭头即为电荷转移方向):

图2-4

下面我们简单来了解一下这3种架构的CCD。

2.3.1 帧转移架构

帧转移架构(frame transfer)的CCD分为两部分:影像区和存储区。前者由光电二极管组成,负责将光电信号转换成模拟电信号;后者则有遮光涂层,不感光,主要用于存储并读取电荷数据。其结构示意图如图2-5所示:

图2-5,Photo via Hamamatsu.magnet.fsu.edu

平行时钟控制偏压电路,将电荷从影像区转移至存储区,系列移位寄存器以「行」为单位读取电荷数据后传输至芯片外部的信号放大器。最后一行的电荷数据从芯片转移出去之后,开始重复下一行数据的转移[1]。

此类CCD的优点是较高的帧转移效率,无需机械快门。缺点是较低的影像解析度(较小的感光区,可容纳的像素较少)和较高的成本(两倍的硅基面积)。

2.3.2 全帧架构

与帧转移架构最大的不同是,全帧架构(full frame)的全部区域均为感光区,不设独立存储区。平行移位寄存器位于感光区下一层,也是以行为单位读取电荷,余者与帧转移类似。如图2-6所示:

图2-6,Photo via Hamamatsu.magnet.fsu.edu

正如前文所述,为了便于大家理解,可将电势井类比为杯子,电子类比为水,则,其电荷转移原理示意图可用图2-7来表示:

图2-7

此类CCD的优点是:拥有更高的芯片使用率,制作成本相对低廉。若寄存器在读取光电二极管的数据时,后者仍然处于曝光状态,则最终的影像将会出现拖尾效应(如图2-8所示)。因此,此类CCD需配合机械快门一起使用,后者起到了遮光和控制曝光的作用。

图2-8

2.3.3 行间转移架构

行间转移架构(interline transfer)在外观设计上与全帧CCD类似,不同之处在于,每个像素旁边即有一个不感光的寄存器,每两个像素成对耦合在一起,电荷以「每两个像素为单位」转移至寄存器,这便是「电荷耦合」名称的由来。如图2-9所示:

图2-9,Photo via Hamamatsu.magnet.fsu.edu

此类型CCD最大的优点是,无需搭配机械快门,较高的帧转移效率,因此,影像拖尾效应也相对减少。缺点是,更复杂的设计架构和更高的制作成本。

三、数字影像之「芯」:CMOS

3.1 CMOS结构

1992年,美国航空航天局(NASA)喷气推进实验室科学家Eric Fossum博士发表了长篇论文,讨论了有源像素传感器技术的应用,后来便有了CMOS传感器的出现。

CMOS,英文全称为Complementary Metal-Oxide Semiconductor,译为「互补金属氧化物半导体」。CMOS影像传感器主要由以下四部分构成:

(1)微透镜:位于传感器最顶层,主要作用是将入射光线聚焦于光电二极管,提高光线的利用率。

(2)彩色滤镜:与CCD类似,也是拜耳滤镜,包含红、绿、蓝三种颜色,用于过滤不同波长的光线。

(3)金属连接层(电路):金属(铝或铜)连接线和氧化物保护膜。

(4)硅基:内置主要元件为光电二极管,将光信号转换成电信号。

其横截面示意图如图3-1所示:

图3-1,Photo by IBM。

3.2 CMOS运行原理

与CCD最大的不同是,CMOS的每个像素都内置有一个独立的信号放大器,因此,CMOS传感器也被称为有源像素传感器(APS,Active Pixel Sensor)。光线进入CMOS后与光电二极管发生光电效应,偏压门电路控制后者的光敏性,从上至下逐行扫描式曝光,每个像素内产生的电信号均被立即放大(相关知识,可阅读影像派之前的文章《摄影知识科普 | 你最熟悉的「快门」,却藏有这些你最陌生的认知》)。传感器的每一列都有模数转换器(ADC), 以「列」为单位读取电荷数据并转移至并行处理总线,然后输送至信号放大器,最后传至图像处理器。

示意图如图3-2所示:

图3-2

3.3 前照式 vs 背照式

根据结构的不同,CMOS影像传感器可分为「前照式」和「背照式」两种。

传统CMOS的光电二极管位于传感器的最底部、金属线下方,入射光从光电二极管的前面(与电路相连的一侧)进入,此类CMOS传感器因此被称为「前照式传感器」(FSI, Front-side Illuminated Sensor)。如图3-3所示:

图3-3

前照式传感器有一个最大的缺点:

光线在照射到光电二极管时要先经过电路,电路中的金属线会反射一部分入射光,这不仅直接降低了光线的利用率,而且光线的散射也增加了系统的噪声,降低了传感器的宽容度。

为了提升传感器在弱光环境下的感光表现,减少系统噪声,后来在前照式设计的基础上进行了改进与升级,将光电二级管置于电路上方,入射光经过滤镜后直接从二极管的背面(背对电路的一侧)进入。因此,此类CMOS被称为「背照式传感器」(BSI, Back-side Illuminated Sensor)。如图3-4所示:

图3-4

背照式传感器的优点在于:

大大缩短了光线抵达光电二极管的路径,减少了光线的散射,使光线更聚焦,从而提升了在弱光环境中的感光能力,减少了系统噪声和串扰。背照式设计是CMOS技术的重大改进,对传统CMOS具有更大的竞争优势。

四、CCD vs CMOS

最后,我们来简单对比一下两类影像传感器的优劣。

4.1 CCD的优劣

CCD传感器的主要优点是高画质(噪点较少)和高光敏性(感光区域面积更大),但同时也有高能耗、易发热、制作成本高和低处理效率等缺点。CCD主要应用于对画质和宽容度要求较高的领域,如航天、医学等。

4.2 CMOS的优劣

由于每像素都有独立放大器,而且每一列都有模拟/数字信号转换器,CMOS传感器比CCD有更高的数据处理效率高。由于所需电压比CCD低,能耗也大幅减少,无发热问题。低廉的生产成本使得CMOS有技术应用普及、高度商业化的优势。CMOS的这些优点,都是CCD所不具有的。

然而,CMOS并非完美。大量增加了信号放大器固然提升了数据处理效率,但同时也无可避免地抬高了系统的底噪,使得最终影像的噪点问题更为突出,画质方面的表现不及CCD。此外,CMOS的像素区域(感光区)尺寸不如全帧架构CCD,导致前者的弱光表现能力亦不及后者。

虽然CMOS凭借其小尺寸、低成本、低能耗等优势,一直主宰着消费级数码相机和手机摄影领域,但并不意味着CCD已被市场淘汰,两者不是谁取代谁的问题,而是两者各有千秋,各有各的江湖。

结语

综观全文,我们从原子结构的角度切入,引出了半导体,继而深入探讨了CCD和CMOS,分别向大家简要介绍了各自的物理结构和运行原理。文章虽长,但依旧难免疏漏,无法做到面面俱到,只因传感器的真实世界远比我们想象中要复杂和浩瀚。限于篇幅与个人能力,【影像派】也只能略陈一二,权当抛砖引玉。不足之处,还望读者斧正。

参考文献

[1]Mortimer Abramowitz,Michael W. Davidson,

Concepts in Digital Imaging Technology,hamamatsu.magnet.fsu.edu

[2]Elizabeth Allen,Sophie Triantaphillidou,The Manual_of_Photography (10th ed.) Oxford Focal Press;

【往期文章精选】

摄影知识科普 | 你最熟悉的「快门」,却藏有这些你最陌生的认知

关于光圈,这是我为你整理的最详尽的干货,值得摄影爱好者们收藏

想学摄影?掌握这5个“套路”,让你成为朋友圈的摄影达人!

Snapseed教程|构图不好?3个方法快速拯救你的摄影作品!

Snapseed教程|放下“一键美颜”,教你一招风光人像“美妆术”

若喜欢我的文章,请大家为我点赞、转发、收藏和评论。

头条号【影像派】,专注分享原创摄影作品及各类摄影知识。

加入【影像派】,一起感受摄影的魅力与精彩!

标签: #ccd25magnet