前言:
眼前我们对“哈夫曼压缩算法c语言”大致比较珍视,同学们都想要剖析一些“哈夫曼压缩算法c语言”的相关知识。那么小编在网上汇集了一些对于“哈夫曼压缩算法c语言””的相关知识,希望姐妹们能喜欢,兄弟们一起来了解一下吧!前言
本篇将介绍哈夫曼压缩算法(Huffman compression)
哈夫曼压缩算法(Huffman compression)
众所周知,计算机存储数据时,实际上存储的是一堆0和1(二进制)。
如果我们存储一段字符:ABRACADABRA!
那么计算机会把它们逐一翻译成二进制,如A:01000001;B: 01000010; !: 00001010.
每个字符占8个bits, 这一整段字符则至少占12*8=96 bits。
但如果我们用一些特殊的值来代表这些字符,如:
图中,0代表A; 1111代表B;等等。此时,存储这段字符只需30bits,比96bits小多了,达到了压缩的目的。
我们需要这么一个表格来把原数据翻译成特别的、占空间较少的数据。同时,我们也可以用这个表格,把特别的数据还原成原数据。
首先,为了避免翻译歧义,这个表格需满足一个条件:任何一个字符用的值都不能是其它字符的前缀。
我们举个反例:A: 0; B: 01;这里,A的值是B的值的前缀。如果压缩后的数据为01xxxxxx,x为0或者1,那么这个数据应该翻译成A1xxxxxx, 还是Bxxxxxxx?这样就会造成歧义。
然后,不同的表格会有不同的压缩效果,如:
这个表格的压缩效果更好。
那么我们如何找到最好的表格呢?这个我们稍后再讲。
为了方便阅读,这个表格是可以写成一棵树的:
这棵树的节点左边是0,右边是1。任何含有字符的节点都没有非空子节点。(即上文提及的前缀问题。)
这棵树是在压缩的过程中建成的,这个表格是在树形成后建成的。用这个表格,我们可以很简单地把一段字符变成压缩后的数据,如:
原数据:ABRACADABRA!
表格如上图。
令压缩后的数据为S;
第一个字符是A,根据表格,A:11,故S=11;
第二个字符是B,根据表格,B:00,故S=1100;
第三个字符是R,根据表格,R:011,故S=1100011;
如此类推,读完所有字符为止。
压缩搞定了,那解压呢?很简单,跟着这棵树读就行了:
压缩后的数据S=11000111101011100110001111101
记住,读到1时,往右走,读到0时,往左走。
令解压后的字符串为D;
从根节点出发,第一个数是1,往右走:
第二个数是1,往右走:
读到有字符的节点,返回此字符,加到字符串D里。D:A;
返回根节点,继续读。
第三个数是0,往左走:
第四个数是0,往左走:
读到有字符的节点,返回此字符,加到字符串D里。D:AB;
返回根节点,继续读。
第五个数是0,往左走:
第六个数是1,往右走:
第七个数是1,往右走:
读到有字符的节点,返回此字符,加到字符串D里。D:ABR;
返回根节点,继续读。
如此类推,直到读完所有压缩后的数据S为止。
压缩与解压都搞定了之后 我们需要先把原数据读一遍,并把每个字符出现的次数记录下来。如:
ABRACADABRA!中,A出现了5次;B出现了2次;C出现了1次;D出现了1次;R出现了2次;!出现了1次。
理论上,出现频率越高的字符,我们给它一个占用空间越小的值,这样,我们就可以有最佳的压缩率
由于哈夫曼压缩算法这块涉及内容较多 ,文章篇幅很长;全文全方面讲解了Compose布局的各方面知识。更多Android前言技术进阶,我自荐一套《完整的Android的资料,以及一些视频课讲解》 现在私信发送“进阶”或者“笔记”即可免费获取
最后我想说:
对于程序员来说,要学习的知识内容、技术有太多太多,要想不被环境淘汰就只有不断提升自己,从来都是我们去适应环境,而不是环境来适应我们
技术是无止境的,你需要对自己提交的每一行代码、使用的每一个工具负责,不断挖掘其底层原理,才能使自己的技术升华到更高的层面
Android 架构师之路还很漫长,与君共勉
标签: #哈夫曼压缩算法c语言