前言:
目前兄弟们对“java collectorstolist”大体比较关怀,咱们都想要学习一些“java collectorstolist”的相关文章。那么小编同时在网上搜集了一些对于“java collectorstolist””的相关文章,希望我们能喜欢,小伙伴们一起来学习一下吧!作者:litesky
之前的文章中也提到了,Stream 的核心在于Collectors,即对处理后的数据进行收集。Collectors 提供了非常多且强大的API,可以将最终的数据收集成List、Set、Map,甚至是更复杂的结构(这三者的嵌套组合)。
Collectors 提供了很多API,有很多都是一些函数的重载,这里我个人将其分为三大类,如下:
数据收集:set、map、list聚合归约:统计、求和、最值、平均、字符串拼接、规约前后处理:分区、分组、自定义操作API 使用
这里会讲到一些常用API 的用法,不会讲解所有API,因为真的是太多了,而且各种API的组合操作起来太可怕太复杂了。
数据收集
1.Collectors.toCollection() 将数据转成Collection,只要是Collection 的实现都可以,例如ArrayList、HashSet ,该方法接受一个Collection 的实现对象或者说Collection 工厂的入参。
示例:
2.Collectors.toList()和Collectors.toSet() 其实和Collectors.toCollection() 差不多,只是指定了容器的类型,默认使用ArrayList 和 HashSet。本来我以为这两个方法的内部会使用到Collectors.toCollection(),结果并不是,而是在内部new了一个CollectorImpl。
预期:
刚开始真是不知道作者是怎么想的,后来发现CollectorImpl 是需要一个Set<Collector.Characteristics>(特征集合)的东西,由于Set 是无序的,在toSet()方法中的实现传入了CH_UNORDERED_ID,但是toCollection()方法默都是CH_ID,难道是说在使用toCollecion()方法时不建议传入Set类型?如果有人知道的话,麻烦你告诉我一下。
示例:
Collectors.toMap() 和Collectors.toConcurrentMap(),见名知义,收集成Map和ConcurrentMap,默认使用HashMap和ConcurrentHashMap。这里toConcurrentMap()是可以支持并行收集的,这两种类型都有三个重载方法,不管是Map 还是ConcurrentMap,他们和Collection的区别是Map 是K-V 形式的,所以在收集成Map的时候必须指定收集的K(依据)。这里toMap()和toConcurrentMap() 最少参数是,key的获取,要存的value。
示例:这里以Student 这个结构为例,Student 包含 id、name。
说明:这里制定k 为 id,value 既可以是对象本身,也可以指定对象的某个字段。可见,map的收集自定义性非常高。
那么如果key重复的该怎么处理?这里我们假设有两个id相同Student,如果他们id相同,在转成Map的时候,取name大一个,小的将会被丢弃。
如果不想使用默认的HashMap 或者 ConcurrentHashMap , 第三个重载方法还可以使用自定义的Map对象(Map工厂)。
聚合归约
Collectors.joining(),拼接,有三个重载方法,底层实现是StringBuilder,通过append方法拼接到一起,并且可以自定义分隔符(这个感觉还是很有用的,很多时候需要把一个list转成一个String,指定分隔符就可以实现了,非常方便)、前缀、后缀。
示例:
Collectors.counting() 统计元素个数,这个和Stream.count() 作用都是一样的,返回的类型一个是包装Long,另一个是基本long,但是他们的使用场景还是有区别的,这个后面再提。
示例:
Collectors.minBy()、Collectors.maxBy() 和Stream.min()、Stream.max() 作用也是一样的,只不过Collectors.minBy()、Collectors.maxBy()适用于高级场景。
示例:
Collectors.summingInt()、Collectors.summarizingLong()、Collectors.summarizingDouble() 这三个分别用于int、long、double类型数据一个求总操作,返回的是一个SummaryStatistics(求总),包含了数量统计count、求和sum、最小值min、平均值average、最大值max。
虽然IntStream、DoubleStream、LongStream 都可以是求和sum 但是也仅仅只是求和,没有summing结果丰富。如果要一次性统计、求平均值什么的,summing还是非常方便的。
示例:
Collectors.averagingInt()、Collectors.averagingDouble()、Collectors.averagingLong() 求平均值,适用于高级场景,这个后面再提。
示例:
Collectors.reducing() 好像也和Stream.reduce()差不多,也都是规约操作。其实Collectors.counting() 就是用reducing()实现的,如代码所示:
那既然这样的话,我们就实现一个对所有学生名字长度求和规约操作。
示例:
前后处理
Collectors.groupingBy()和Collectors.groupingByConcurrent(),这两者区别也仅是单线程和多线程的使用场景。为什么要groupingBy归类为前后处理呢?groupingBy 是在数据收集前分组的,再将分好组的数据传递给下游的收集器。
这是 groupingBy最长的参数的函数classifier 是分类器,mapFactory map的工厂,downstream下游的收集器,正是downstream 的存在,可以在数据传递个下游之前做很多的骚操作。
示例:这里将一组数整型数分为正数、负数、零,groupingByConcurrent()的参数也是跟它一样的就不举例了。
Collectors.partitioningBy() 字面意思话就叫分区好了,但是partitioningBy最多只能将数据分为两部分,因为partitioningBy分区的依据Predicate,而Predicate只会有true 和false 两种结果,所有partitioningBy最多只能将数据分为两组。partitioningBy除了分类器与groupingBy 不一样外,其他的参数都相同。
示例:
Collectors.mapping() 可以自定义要收集的字段。
示例:
Collectors.collectingAndThen()收集后操作,如果你要在收集数据后再做一些操作,那么这个就非常有用了。
示例:这里在收集后转成了listIterator,只是个简单的示例,具体的实现逻辑非常有待想象。
总结
Collectors.作为Stream的核心,工能丰富强大,在我所写的业务代码中,几乎没有Collectors 完不成的,实在太难,只要多想想,多试试这些API的组合,相信还是可以用Collectors来完成的。
之前为了写个排序的id,我花了差不多6个小时去组合这些API,但还好写出来了。这是我写业务时某个复杂的操作
还有一点就是,像Stream操作符中与Collectors.中类似的收集器功能,如果能用Steam的操作符就去使用,这样可以降低系统开销。
对了,在这里说一下,我目前是在职Java开发,如果你现在正在学习Java,了解Java,渴望成为一名合格的Java开发工程师,在入门学习Java的过程当中缺乏基础入门的视频教程,可以关注并私信我:01。获取。我这里有最新的Java基础全套视频教程。